A LIME-Based Explainable Machine Learning Model for Predicting the Severity Level of COVID-19 Diagnosed Patients

The fast and seemingly uncontrollable spread of the novel coronavirus disease (COVID-19) poses great challenges to an already overloaded health system worldwide. It thus exemplifies an urgent need for fast and effective triage. Such triage can help in the implementation of the necessary measures to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Freddy Gabbay, Shirly Bar-Lev, Ofer Montano, Noam Hadad
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/85adda00d46d46428fae7e1c91ec9428
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The fast and seemingly uncontrollable spread of the novel coronavirus disease (COVID-19) poses great challenges to an already overloaded health system worldwide. It thus exemplifies an urgent need for fast and effective triage. Such triage can help in the implementation of the necessary measures to prevent patient deterioration and conserve strained hospital resources. We examine two types of machine learning models, a multilayer perceptron artificial neural networks and decision trees, to predict the severity level of illness for patients diagnosed with COVID-19, based on their medical history and laboratory test results. In addition, we combine the machine learning models with a LIME-based explainable model to provide explainability of the model prediction. Our experimental results indicate that the model can achieve up to 80% prediction accuracy for the dataset we used. Finally, we integrate the explainable machine learning models into a mobile application to enable the usage of the proposed models by medical staff worldwide.