Battery State-of-Health Estimation Using Machine Learning and Preprocessing with Relative State-of-Charge
Because lithium-ion batteries are widely used for various purposes, it is important to estimate their state of health (SOH) to ensure their efficiency and safety. Despite the usefulness of model-based methods for SOH estimation, the difficulties of battery modeling have resulted in a greater emphasi...
Guardado en:
Autores principales: | Sungwoo Jo, Sunkyu Jung, Taemoon Roh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/85d0be4c45ce4c6ba53a4f5fc0b08fa5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Lithium-Ion Battery Parameter Identification via Extremum Seeking Considering Aging and Degradation
por: Iván Sanz-Gorrachategui, et al.
Publicado: (2021) -
Porous Co2VO4 Nanodisk as a High-Energy and Fast-Charging Anode for Lithium-Ion Batteries
por: Jinghui Ren, et al.
Publicado: (2021) -
A Study of Reduced Battery Degradation Through State-of-Charge Pre-Conditioning for Vehicle-to-Grid Operations
por: Truong M. N. Bui, et al.
Publicado: (2021) -
Feedback PID Controller-Based Closed-Loop Fast Charging of Lithium-Ion Batteries Using Constant-Temperature–Constant-Voltage Method
por: Ayesha Kaleem, et al.
Publicado: (2021) -
FPGA Implementation of an Ant Colony Optimization Based SVM Algorithm for State of Charge Estimation in Li-Ion Batteries
por: Mattia Stighezza, et al.
Publicado: (2021)