Multi-level dilated residual network for biomedical image segmentation
Abstract We propose a novel multi-level dilated residual neural network, an extension of the classical U-Net architecture, for biomedical image segmentation. U-Net is the most popular deep neural architecture for biomedical image segmentation, however, despite being state-of-the-art, the model has a...
Guardado en:
Autores principales: | Naga Raju Gudhe, Hamid Behravan, Mazen Sudah, Hidemi Okuma, Ritva Vanninen, Veli-Matti Kosma, Arto Mannermaa |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/85e9a86e1d424523bea41de106b48ead |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Γ-secretase components as predictors of breast cancer outcome.
por: Hanna M Peltonen, et al.
Publicado: (2013) -
Type II transmembrane serine protease gene variants associate with breast cancer.
por: Kaisa Luostari, et al.
Publicado: (2014) -
CMM-Net: Contextual multi-scale multi-level network for efficient biomedical image segmentation
por: Mohammed A. Al-masni, et al.
Publicado: (2021) -
HDC-Net: A hierarchical dilation convolutional network for retinal vessel segmentation.
por: Xiaolong Hu, et al.
Publicado: (2021) -
Introducing Biomedisa as an open-source online platform for biomedical image segmentation
por: Philipp D. Lösel, et al.
Publicado: (2020)