Coexisting commensurate and incommensurate charge ordered phases in CoO

Abstract The subtle interplay of strong electronic correlations in a distorted crystal lattice often leads to the evolution of novel emergent functionalities in the strongly correlated materials (SCM). Here, we unravel such unprecedented commensurate (COM) and incommensurate (ICOM) charge ordered (C...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Devendra Negi, Deobrat Singh, Rajeev Ahuja, Peter A. van Aken
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8606e978a0e54a10bac5859af8f47b7b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8606e978a0e54a10bac5859af8f47b7b
record_format dspace
spelling oai:doaj.org-article:8606e978a0e54a10bac5859af8f47b7b2021-12-02T17:37:28ZCoexisting commensurate and incommensurate charge ordered phases in CoO10.1038/s41598-021-98739-62045-2322https://doaj.org/article/8606e978a0e54a10bac5859af8f47b7b2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-98739-6https://doaj.org/toc/2045-2322Abstract The subtle interplay of strong electronic correlations in a distorted crystal lattice often leads to the evolution of novel emergent functionalities in the strongly correlated materials (SCM). Here, we unravel such unprecedented commensurate (COM) and incommensurate (ICOM) charge ordered (CO) phases at room temperature in a simple transition-metal mono-oxide, namely CoO. The electron diffraction pattern unveils a COM ( $$q_{1}$$ q 1 = $$\frac{1}{2}(1,1,{\bar{1}})$$ 1 2 ( 1 , 1 , 1 ¯ ) and ICOM ( $$q_{2}=0.213(1,1,{\bar{1}})$$ q 2 = 0.213 ( 1 , 1 , 1 ¯ ) ) periodic lattice distortion. Transmission electron microscopy (TEM) captures unidirectional and bidirectional stripe patterns of charge density modulations. The widespread phase singularities in the phase-field of the order parameter (OP) affirms the abundant topological disorder. Using, density functional theory (DFT) calculations, we demystify the underlying electronic mechanism. The DFT study shows that a cation disordering ( $$\mathrm {Co}_{1-\textit{x}}\mathrm {O}, \text {with }{} \textit{x} = 4.17 \%$$ Co 1 - x O , with x = 4.17 % ) stabilizes Jahn-Teller (JT) distortion and localized aliovalent $$\mathrm {Co}^{3+}$$ Co 3 + states in CoO. Therefore, the lattice distortion accompanied with mixed valence states ( $$\mathrm {Co}^{3+}, \mathrm {Co}^{2+}$$ Co 3 + , Co 2 + ) states introduces CO in CoO. Our findings offer an electronic paradigm to engineer CO to exploit the associated electronic functionalities in widely available transition-metal mono-oxides.Devendra NegiDeobrat SinghRajeev AhujaPeter A. van AkenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Devendra Negi
Deobrat Singh
Rajeev Ahuja
Peter A. van Aken
Coexisting commensurate and incommensurate charge ordered phases in CoO
description Abstract The subtle interplay of strong electronic correlations in a distorted crystal lattice often leads to the evolution of novel emergent functionalities in the strongly correlated materials (SCM). Here, we unravel such unprecedented commensurate (COM) and incommensurate (ICOM) charge ordered (CO) phases at room temperature in a simple transition-metal mono-oxide, namely CoO. The electron diffraction pattern unveils a COM ( $$q_{1}$$ q 1 = $$\frac{1}{2}(1,1,{\bar{1}})$$ 1 2 ( 1 , 1 , 1 ¯ ) and ICOM ( $$q_{2}=0.213(1,1,{\bar{1}})$$ q 2 = 0.213 ( 1 , 1 , 1 ¯ ) ) periodic lattice distortion. Transmission electron microscopy (TEM) captures unidirectional and bidirectional stripe patterns of charge density modulations. The widespread phase singularities in the phase-field of the order parameter (OP) affirms the abundant topological disorder. Using, density functional theory (DFT) calculations, we demystify the underlying electronic mechanism. The DFT study shows that a cation disordering ( $$\mathrm {Co}_{1-\textit{x}}\mathrm {O}, \text {with }{} \textit{x} = 4.17 \%$$ Co 1 - x O , with x = 4.17 % ) stabilizes Jahn-Teller (JT) distortion and localized aliovalent $$\mathrm {Co}^{3+}$$ Co 3 + states in CoO. Therefore, the lattice distortion accompanied with mixed valence states ( $$\mathrm {Co}^{3+}, \mathrm {Co}^{2+}$$ Co 3 + , Co 2 + ) states introduces CO in CoO. Our findings offer an electronic paradigm to engineer CO to exploit the associated electronic functionalities in widely available transition-metal mono-oxides.
format article
author Devendra Negi
Deobrat Singh
Rajeev Ahuja
Peter A. van Aken
author_facet Devendra Negi
Deobrat Singh
Rajeev Ahuja
Peter A. van Aken
author_sort Devendra Negi
title Coexisting commensurate and incommensurate charge ordered phases in CoO
title_short Coexisting commensurate and incommensurate charge ordered phases in CoO
title_full Coexisting commensurate and incommensurate charge ordered phases in CoO
title_fullStr Coexisting commensurate and incommensurate charge ordered phases in CoO
title_full_unstemmed Coexisting commensurate and incommensurate charge ordered phases in CoO
title_sort coexisting commensurate and incommensurate charge ordered phases in coo
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/8606e978a0e54a10bac5859af8f47b7b
work_keys_str_mv AT devendranegi coexistingcommensurateandincommensuratechargeorderedphasesincoo
AT deobratsingh coexistingcommensurateandincommensuratechargeorderedphasesincoo
AT rajeevahuja coexistingcommensurateandincommensuratechargeorderedphasesincoo
AT peteravanaken coexistingcommensurateandincommensuratechargeorderedphasesincoo
_version_ 1718379893582987264