Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure.
The archaeal RNA polymerase (RNAP) shares structural similarities with eukaryotic RNAP II but requires a reduced subset of general transcription factors for promoter-dependent initiation. To deepen our knowledge of cellular transcription, we have determined the structure of the 13-subunit DNA-direct...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2009
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8606eed1a0604377bdd45343053e2e4a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The archaeal RNA polymerase (RNAP) shares structural similarities with eukaryotic RNAP II but requires a reduced subset of general transcription factors for promoter-dependent initiation. To deepen our knowledge of cellular transcription, we have determined the structure of the 13-subunit DNA-directed RNAP from Sulfolobus shibatae at 3.35 Å resolution. The structure contains the full complement of subunits, including RpoG/Rpb8 and the equivalent of the clamp-head and jaw domains of the eukaryotic Rpb1. Furthermore, we have identified subunit Rpo13, an RNAP component in the order Sulfolobales, which contains a helix-turn-helix motif that interacts with the RpoH/Rpb5 and RpoA'/Rpb1 subunits. Its location and topology suggest a role in the formation of the transcription bubble. |
---|