Prevalence and risk factors for antimicrobial resistance among newborns with gram-negative sepsis.

<h4>Introduction</h4>Newborn sepsis accounts for more than a third of neonatal deaths globally and one in five neonatal deaths in Ethiopia. The first-line treatment recommended by WHO is the combination of gentamicin with ampicillin or benzylpenicillin. Gram-negative bacteria (GNB) are i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Semaria Solomon, Oluwasefunmi Akeju, Oludare A Odumade, Rozina Ambachew, Zenebe Gebreyohannes, Kimi Van Wickle, Mahlet Abayneh, Gesit Metaferia, Maria J Carvalho, Kathryn Thomson, Kirsty Sands, Timothy R Walsh, Rebecca Milton, Frederick G B Goddard, Delayehu Bekele, Grace J Chan
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/860b018af68c490ab866f9ea248421be
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<h4>Introduction</h4>Newborn sepsis accounts for more than a third of neonatal deaths globally and one in five neonatal deaths in Ethiopia. The first-line treatment recommended by WHO is the combination of gentamicin with ampicillin or benzylpenicillin. Gram-negative bacteria (GNB) are increasingly resistant to previously effective antibiotics.<h4>Objectives</h4>Our goal was to estimate the prevalence of antibiotic-resistant gram-negative bacteremia and identify risk factors for antibiotic resistance, among newborns with GNB sepsis.<h4>Methods</h4>At a tertiary hospital in Ethiopia, we enrolled a cohort pregnant women and their newborns, between March and December 2017. Newborns who were followed up until 60 days of life for clinical signs of sepsis. Among the newborns with clinical signs of sepsis, blood samples were cultured; bacterial species were identified and tested for antibiotic susceptibility. We described the prevalence of antibiotic resistance, identified newborn, maternal, and environmental factors associated with multidrug resistance (MDR), and combined resistance to ampicillin and gentamicin (AmpGen), using multivariable regression.<h4>Results</h4>Of the 119 newborns with gram-negative bacteremia, 80 (67%) were born preterm and 82 (70%) had early-onset sepsis. The most prevalent gram-negative species were Klebsiella pneumoniae 94 (79%) followed by Escherichia coli 10 (8%). Ampicillin resistance was found in 113 cases (95%), cefotaxime 104 (87%), gentamicin 101 (85%), AmpGen 101 (85%), piperacillin-tazobactam 47 (39%), amikacin 10 (8.4%), and Imipenem 1 (0.8%). Prevalence of MDR was 88% (n = 105). Low birthweight and late-onset sepsis (LOS) were associated with higher risks of AmpGen-resistant infections. All-cause mortality was higher among newborns treated with ineffective antibiotics.<h4>Conclusion</h4>There was significant resistance to current first-line antibiotics and cephalosporins. Additional data are needed from primary care and community settings. Amikacin and piperacillin-tazobactam had lower rates of resistance; however, context-specific assessments of their potential adverse effects, their local availability, and cost-effectiveness would be necessary before selecting a new first-line regimen to help guide clinical decision-making.