How machine learning can help select capping layers to suppress perovskite degradation
The stability of perovskite solar cells can be improved by using hybrid-organic perovskites capping-layers atop the active material. Here the authors use machine learning to optimize capping layers by monitoring time to degradation of differently capped lead-halide perovskite solar cells.
Guardado en:
Autores principales: | Noor Titan Putri Hartono, Janak Thapa, Armi Tiihonen, Felipe Oviedo, Clio Batali, Jason J. Yoo, Zhe Liu, Ruipeng Li, David Fuertes Marrón, Moungi G. Bawendi, Tonio Buonassisi, Shijing Sun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/861c90d6759a4ed095d7c0e936f97937 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: How machine learning can help select capping layers to suppress perovskite degradation
por: Noor Titan Putri Hartono, et al.
Publicado: (2020) -
Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning
por: Yicheng Zhao, et al.
Publicado: (2021) -
Benchmarking the performance of Bayesian optimization across multiple experimental materials science domains
por: Qiaohao Liang, et al.
Publicado: (2021) -
CAP today
Publicado: (1987) -
Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared
por: Daniel Franke, et al.
Publicado: (2016)