Application of Artificial Neural Network Based on Traditional Detection and GC-MS in Prediction of Free Radicals in Thermal Oxidation of Vegetable Oil
In this study, electron paramagnetic resonance (EPR) and gas chromatography-mass spectrometry (GC-MS) techniques were applied to reveal the variation of lipid free radicals and oxidized volatile products of four oils in the thermal process. The EPR results showed the signal intensities of linseed oi...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/863f04a83fce40cbbf6848443223c589 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:863f04a83fce40cbbf6848443223c589 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:863f04a83fce40cbbf6848443223c5892021-11-11T18:39:34ZApplication of Artificial Neural Network Based on Traditional Detection and GC-MS in Prediction of Free Radicals in Thermal Oxidation of Vegetable Oil10.3390/molecules262167171420-3049https://doaj.org/article/863f04a83fce40cbbf6848443223c5892021-11-01T00:00:00Zhttps://www.mdpi.com/1420-3049/26/21/6717https://doaj.org/toc/1420-3049In this study, electron paramagnetic resonance (EPR) and gas chromatography-mass spectrometry (GC-MS) techniques were applied to reveal the variation of lipid free radicals and oxidized volatile products of four oils in the thermal process. The EPR results showed the signal intensities of linseed oil (LO) were the highest, followed by sunflower oil (SO), rapeseed oil (RO), and palm oil (PO). Moreover, the signal intensities of the four oils increased with heating time. GC-MS results showed that (<i>E</i>)-2-decenal, (<i>E</i>,<i>E</i>)-2,4-decadienal, and 2-undecenal were the main volatile compounds of oxidized oil. Besides, the oxidized PO and LO contained the highest and lowest contents of volatiles, respectively. According to the oil characteristics, an artificial neural network (ANN) intelligent evaluation model of free radicals was established. The coefficients of determination (R2) of ANN models were more than 0.97, and the difference between the true and predicted values was small, which indicated that oil profiles combined with chemometrics can accurately predict the free radical of thermal oxidized oil.Shengquan HuangYing LiuXuyuan SunJinwei LiMDPI AGarticlefree radicalelectron paramagnetic resonancevolatilelipid oxidationartificial neural network (ANN)Organic chemistryQD241-441ENMolecules, Vol 26, Iss 6717, p 6717 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
free radical electron paramagnetic resonance volatile lipid oxidation artificial neural network (ANN) Organic chemistry QD241-441 |
spellingShingle |
free radical electron paramagnetic resonance volatile lipid oxidation artificial neural network (ANN) Organic chemistry QD241-441 Shengquan Huang Ying Liu Xuyuan Sun Jinwei Li Application of Artificial Neural Network Based on Traditional Detection and GC-MS in Prediction of Free Radicals in Thermal Oxidation of Vegetable Oil |
description |
In this study, electron paramagnetic resonance (EPR) and gas chromatography-mass spectrometry (GC-MS) techniques were applied to reveal the variation of lipid free radicals and oxidized volatile products of four oils in the thermal process. The EPR results showed the signal intensities of linseed oil (LO) were the highest, followed by sunflower oil (SO), rapeseed oil (RO), and palm oil (PO). Moreover, the signal intensities of the four oils increased with heating time. GC-MS results showed that (<i>E</i>)-2-decenal, (<i>E</i>,<i>E</i>)-2,4-decadienal, and 2-undecenal were the main volatile compounds of oxidized oil. Besides, the oxidized PO and LO contained the highest and lowest contents of volatiles, respectively. According to the oil characteristics, an artificial neural network (ANN) intelligent evaluation model of free radicals was established. The coefficients of determination (R2) of ANN models were more than 0.97, and the difference between the true and predicted values was small, which indicated that oil profiles combined with chemometrics can accurately predict the free radical of thermal oxidized oil. |
format |
article |
author |
Shengquan Huang Ying Liu Xuyuan Sun Jinwei Li |
author_facet |
Shengquan Huang Ying Liu Xuyuan Sun Jinwei Li |
author_sort |
Shengquan Huang |
title |
Application of Artificial Neural Network Based on Traditional Detection and GC-MS in Prediction of Free Radicals in Thermal Oxidation of Vegetable Oil |
title_short |
Application of Artificial Neural Network Based on Traditional Detection and GC-MS in Prediction of Free Radicals in Thermal Oxidation of Vegetable Oil |
title_full |
Application of Artificial Neural Network Based on Traditional Detection and GC-MS in Prediction of Free Radicals in Thermal Oxidation of Vegetable Oil |
title_fullStr |
Application of Artificial Neural Network Based on Traditional Detection and GC-MS in Prediction of Free Radicals in Thermal Oxidation of Vegetable Oil |
title_full_unstemmed |
Application of Artificial Neural Network Based on Traditional Detection and GC-MS in Prediction of Free Radicals in Thermal Oxidation of Vegetable Oil |
title_sort |
application of artificial neural network based on traditional detection and gc-ms in prediction of free radicals in thermal oxidation of vegetable oil |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/863f04a83fce40cbbf6848443223c589 |
work_keys_str_mv |
AT shengquanhuang applicationofartificialneuralnetworkbasedontraditionaldetectionandgcmsinpredictionoffreeradicalsinthermaloxidationofvegetableoil AT yingliu applicationofartificialneuralnetworkbasedontraditionaldetectionandgcmsinpredictionoffreeradicalsinthermaloxidationofvegetableoil AT xuyuansun applicationofartificialneuralnetworkbasedontraditionaldetectionandgcmsinpredictionoffreeradicalsinthermaloxidationofvegetableoil AT jinweili applicationofartificialneuralnetworkbasedontraditionaldetectionandgcmsinpredictionoffreeradicalsinthermaloxidationofvegetableoil |
_version_ |
1718431772665970688 |