Semi-Automated Ground Truth Segmentation and Phenotyping of Plant Structures Using k-Means Clustering of Eigen-Colors (kmSeg)
<b>Background</b>. Efficient analysis of large image data produced in greenhouse phenotyping experiments is often challenged by a large variability of optical plant and background appearance which requires advanced classification model methods and reliable ground truth data for their tra...
Guardado en:
Autores principales: | Michael Henke, Kerstin Neumann, Thomas Altmann, Evgeny Gladilin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8645665951a24244b33fd01dc725232f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Towards Automated Analysis of Grain Spikes in Greenhouse Images Using Neural Network Approaches: A Comparative Investigation of Six Methods
por: Sajid Ullah, et al.
Publicado: (2021) -
Automated Ground Truth Generation for Learning-Based Crack Detection on Concrete Surfaces
por: Hsiang-Chieh Chen, et al.
Publicado: (2021) -
Evaluating Registrations of Serial Sections With Distortions of the Ground Truths
por: Oleg Lobachev, et al.
Publicado: (2021) -
Trans-humanism’s and Post-humanism’s Dialectics between Truth and Post-truth
por: Monika Banaś
Publicado: (2021) -
Subject of Truth in the Russian Religious Philosophy
por: Vladimir Borisovich Aleksandrov
Publicado: (2018)