Semi-Automated Ground Truth Segmentation and Phenotyping of Plant Structures Using k-Means Clustering of Eigen-Colors (kmSeg)
<b>Background</b>. Efficient analysis of large image data produced in greenhouse phenotyping experiments is often challenged by a large variability of optical plant and background appearance which requires advanced classification model methods and reliable ground truth data for their tra...
Enregistré dans:
| Auteurs principaux: | Michael Henke, Kerstin Neumann, Thomas Altmann, Evgeny Gladilin |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
MDPI AG
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/8645665951a24244b33fd01dc725232f |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Towards Automated Analysis of Grain Spikes in Greenhouse Images Using Neural Network Approaches: A Comparative Investigation of Six Methods
par: Sajid Ullah, et autres
Publié: (2021) -
Automated Ground Truth Generation for Learning-Based Crack Detection on Concrete Surfaces
par: Hsiang-Chieh Chen, et autres
Publié: (2021) -
Evaluating Registrations of Serial Sections With Distortions of the Ground Truths
par: Oleg Lobachev, et autres
Publié: (2021) -
Trans-humanism’s and Post-humanism’s Dialectics between Truth and Post-truth
par: Monika Banaś
Publié: (2021) -
Subject of Truth in the Russian Religious Philosophy
par: Vladimir Borisovich Aleksandrov
Publié: (2018)