Correlation-Based Method for Tracing Multi-dimensional Time Series Data Anomalies
This paper proposes a multi-dimensional time series anomaly data detection method based on correlation analysis, to trace the cause of anomaly detection: system failure data and sensor quality problem data are classified, and then real system failures are identified to avoid false detection. Firstly...
Guardado en:
Autor principal: | WANG Muxian, DING Xiaoou, WANG Hongzhi+, LI Jianzhong |
---|---|
Formato: | article |
Lenguaje: | ZH |
Publicado: |
Journal of Computer Engineering and Applications Beijing Co., Ltd., Science Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8648b6e8ce5a4934a4f203220c3483d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Improving outliers detection in data streams using LiCS and voting
por: Fatima-Zahra Benjelloun, et al.
Publicado: (2021) -
Algorithms for Finding Diameter Cycles of Biconnected Graphs
por: Mehmet Hakan Karaata
Publicado: (2020) -
Anomaly Detection for Time Series with Difference Rate Sample Entropy and Generative Adversarial Networks
por: Keke Gao, et al.
Publicado: (2021) -
Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting
por: Ari Yair Barrera-Animas, et al.
Publicado: (2022) -
Big knowledge-based semantic correlation for detecting slow and low-level advanced persistent threats
por: Amir Mohammadzade Lajevardi, et al.
Publicado: (2021)