Time-Resolved Nanobeam X-ray Diffraction of a Relaxor Ferroelectric Single Crystal under an Alternating Electric Field
Lead-containing relaxor ferroelectrics show enormous piezoelectric capabilities relating to their heterogeneous structures. Time-resolved nanobeam X-ray diffraction reveals the time and position dependences of the local lattice strain on a relaxor ferroelectric single crystal mechanically vibrating...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8651f105624c49248f406882464c6837 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Lead-containing relaxor ferroelectrics show enormous piezoelectric capabilities relating to their heterogeneous structures. Time-resolved nanobeam X-ray diffraction reveals the time and position dependences of the local lattice strain on a relaxor ferroelectric single crystal mechanically vibrating and alternately switching, as well as its polarization under an alternating electric field. The complicated time and position dependences of the Bragg intensity distributions under an alternating electric field demonstrate that nanodomains with the various lattice constants and orientations exhibiting different electric field responses exist in the measured local area, as the translation symmetry breaks to the microscale. The dynamic motion of nanodomains in the heterogeneous structure, with widely distributed local lattice strain, enables enormous piezoelectric lattice strain and fatigue-free ferroelectric polarization switching. |
---|