An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton

Abstract Conventional standing-wave (SW) fluorescence microscopy uses a single wavelength to excite fluorescence from the specimen, which is normally placed in contact with a first surface reflector. The resulting excitation SW creates a pattern of illumination with anti-nodal maxima at multiple eve...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jana K. Schniete, Peter W. Tinning, Ross C. Scrimgeour, Gillian Robb, Lisa S. Kölln, Katrina Wesencraft, Nikki R. Paul, Trevor J. Bushell, Gail McConnell
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/865683770a794d9a803f1b866f316426
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:865683770a794d9a803f1b866f316426
record_format dspace
spelling oai:doaj.org-article:865683770a794d9a803f1b866f3164262021-12-02T10:44:15ZAn evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton10.1038/s41598-020-78282-62045-2322https://doaj.org/article/865683770a794d9a803f1b866f3164262021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-78282-6https://doaj.org/toc/2045-2322Abstract Conventional standing-wave (SW) fluorescence microscopy uses a single wavelength to excite fluorescence from the specimen, which is normally placed in contact with a first surface reflector. The resulting excitation SW creates a pattern of illumination with anti-nodal maxima at multiple evenly-spaced planes perpendicular to the optical axis of the microscope. These maxima are approximately 90 nm thick and spaced 180 nm apart. Where the planes intersect fluorescent structures, emission occurs, but between the planes are non-illuminated regions which are not sampled for fluorescence. We evaluate a multi-excitation-wavelength SW fluorescence microscopy (which we call TartanSW) as a method for increasing the density of sampling by using SWs with different axial periodicities, to resolve more of the overall cell structure. The TartanSW method increased the sampling density from 50 to 98% over seven anti-nodal planes, with no notable change in axial or lateral resolution compared to single-excitation-wavelength SW microscopy. We demonstrate the method with images of the membrane and cytoskeleton of living and fixed cells.Jana K. SchnietePeter W. TinningRoss C. ScrimgeourGillian RobbLisa S. KöllnKatrina WesencraftNikki R. PaulTrevor J. BushellGail McConnellNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jana K. Schniete
Peter W. Tinning
Ross C. Scrimgeour
Gillian Robb
Lisa S. Kölln
Katrina Wesencraft
Nikki R. Paul
Trevor J. Bushell
Gail McConnell
An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton
description Abstract Conventional standing-wave (SW) fluorescence microscopy uses a single wavelength to excite fluorescence from the specimen, which is normally placed in contact with a first surface reflector. The resulting excitation SW creates a pattern of illumination with anti-nodal maxima at multiple evenly-spaced planes perpendicular to the optical axis of the microscope. These maxima are approximately 90 nm thick and spaced 180 nm apart. Where the planes intersect fluorescent structures, emission occurs, but between the planes are non-illuminated regions which are not sampled for fluorescence. We evaluate a multi-excitation-wavelength SW fluorescence microscopy (which we call TartanSW) as a method for increasing the density of sampling by using SWs with different axial periodicities, to resolve more of the overall cell structure. The TartanSW method increased the sampling density from 50 to 98% over seven anti-nodal planes, with no notable change in axial or lateral resolution compared to single-excitation-wavelength SW microscopy. We demonstrate the method with images of the membrane and cytoskeleton of living and fixed cells.
format article
author Jana K. Schniete
Peter W. Tinning
Ross C. Scrimgeour
Gillian Robb
Lisa S. Kölln
Katrina Wesencraft
Nikki R. Paul
Trevor J. Bushell
Gail McConnell
author_facet Jana K. Schniete
Peter W. Tinning
Ross C. Scrimgeour
Gillian Robb
Lisa S. Kölln
Katrina Wesencraft
Nikki R. Paul
Trevor J. Bushell
Gail McConnell
author_sort Jana K. Schniete
title An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton
title_short An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton
title_full An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton
title_fullStr An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton
title_full_unstemmed An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton
title_sort evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (tartansw) to improve sampling density in studies of the cell membrane and cytoskeleton
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/865683770a794d9a803f1b866f316426
work_keys_str_mv AT janakschniete anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
AT peterwtinning anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
AT rosscscrimgeour anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
AT gillianrobb anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
AT lisaskolln anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
AT katrinawesencraft anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
AT nikkirpaul anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
AT trevorjbushell anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
AT gailmcconnell anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
AT janakschniete evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
AT peterwtinning evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
AT rosscscrimgeour evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
AT gillianrobb evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
AT lisaskolln evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
AT katrinawesencraft evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
AT nikkirpaul evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
AT trevorjbushell evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
AT gailmcconnell evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton
_version_ 1718396773168316416