An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton
Abstract Conventional standing-wave (SW) fluorescence microscopy uses a single wavelength to excite fluorescence from the specimen, which is normally placed in contact with a first surface reflector. The resulting excitation SW creates a pattern of illumination with anti-nodal maxima at multiple eve...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/865683770a794d9a803f1b866f316426 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:865683770a794d9a803f1b866f316426 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:865683770a794d9a803f1b866f3164262021-12-02T10:44:15ZAn evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton10.1038/s41598-020-78282-62045-2322https://doaj.org/article/865683770a794d9a803f1b866f3164262021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-78282-6https://doaj.org/toc/2045-2322Abstract Conventional standing-wave (SW) fluorescence microscopy uses a single wavelength to excite fluorescence from the specimen, which is normally placed in contact with a first surface reflector. The resulting excitation SW creates a pattern of illumination with anti-nodal maxima at multiple evenly-spaced planes perpendicular to the optical axis of the microscope. These maxima are approximately 90 nm thick and spaced 180 nm apart. Where the planes intersect fluorescent structures, emission occurs, but between the planes are non-illuminated regions which are not sampled for fluorescence. We evaluate a multi-excitation-wavelength SW fluorescence microscopy (which we call TartanSW) as a method for increasing the density of sampling by using SWs with different axial periodicities, to resolve more of the overall cell structure. The TartanSW method increased the sampling density from 50 to 98% over seven anti-nodal planes, with no notable change in axial or lateral resolution compared to single-excitation-wavelength SW microscopy. We demonstrate the method with images of the membrane and cytoskeleton of living and fixed cells.Jana K. SchnietePeter W. TinningRoss C. ScrimgeourGillian RobbLisa S. KöllnKatrina WesencraftNikki R. PaulTrevor J. BushellGail McConnellNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jana K. Schniete Peter W. Tinning Ross C. Scrimgeour Gillian Robb Lisa S. Kölln Katrina Wesencraft Nikki R. Paul Trevor J. Bushell Gail McConnell An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton |
description |
Abstract Conventional standing-wave (SW) fluorescence microscopy uses a single wavelength to excite fluorescence from the specimen, which is normally placed in contact with a first surface reflector. The resulting excitation SW creates a pattern of illumination with anti-nodal maxima at multiple evenly-spaced planes perpendicular to the optical axis of the microscope. These maxima are approximately 90 nm thick and spaced 180 nm apart. Where the planes intersect fluorescent structures, emission occurs, but between the planes are non-illuminated regions which are not sampled for fluorescence. We evaluate a multi-excitation-wavelength SW fluorescence microscopy (which we call TartanSW) as a method for increasing the density of sampling by using SWs with different axial periodicities, to resolve more of the overall cell structure. The TartanSW method increased the sampling density from 50 to 98% over seven anti-nodal planes, with no notable change in axial or lateral resolution compared to single-excitation-wavelength SW microscopy. We demonstrate the method with images of the membrane and cytoskeleton of living and fixed cells. |
format |
article |
author |
Jana K. Schniete Peter W. Tinning Ross C. Scrimgeour Gillian Robb Lisa S. Kölln Katrina Wesencraft Nikki R. Paul Trevor J. Bushell Gail McConnell |
author_facet |
Jana K. Schniete Peter W. Tinning Ross C. Scrimgeour Gillian Robb Lisa S. Kölln Katrina Wesencraft Nikki R. Paul Trevor J. Bushell Gail McConnell |
author_sort |
Jana K. Schniete |
title |
An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton |
title_short |
An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton |
title_full |
An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton |
title_fullStr |
An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton |
title_full_unstemmed |
An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton |
title_sort |
evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (tartansw) to improve sampling density in studies of the cell membrane and cytoskeleton |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/865683770a794d9a803f1b866f316426 |
work_keys_str_mv |
AT janakschniete anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton AT peterwtinning anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton AT rosscscrimgeour anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton AT gillianrobb anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton AT lisaskolln anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton AT katrinawesencraft anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton AT nikkirpaul anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton AT trevorjbushell anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton AT gailmcconnell anevaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton AT janakschniete evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton AT peterwtinning evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton AT rosscscrimgeour evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton AT gillianrobb evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton AT lisaskolln evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton AT katrinawesencraft evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton AT nikkirpaul evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton AT trevorjbushell evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton AT gailmcconnell evaluationofmultiexcitationwavelengthstandingwavefluorescencemicroscopytartanswtoimprovesamplingdensityinstudiesofthecellmembraneandcytoskeleton |
_version_ |
1718396773168316416 |