Prediction of Hospital Readmission from Longitudinal Mobile Data Streams
Hospital readmissions impose an extreme burden on both health systems and patients. Timely management of the postoperative complications that result in readmissions is necessary to mitigate the effects of these events. However, accurately predicting readmissions is very challenging, and current appr...
Guardado en:
Autores principales: | Chen Qian, Patraporn Leelaprachakul, Matthew Landers, Carissa Low, Anind K. Dey, Afsaneh Doryab |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/865e01a99f27490ea6e853119d1bf335 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Factors influencing readmission among Thais with myocardial infarction
por: Rapin Polsook, et al.
Publicado: (2021) -
Reproducible Analysis Pipeline for Data Streams: Open-Source Software to Process Data Collected With Mobile Devices
por: Julio Vega, et al.
Publicado: (2021) -
Mental health nurses’ views of ward readmission: A focus group study in Brunei Darussalam
por: Karmayunika Khamsiah Haji Kassim, et al.
Publicado: (2021) -
Effect of Educational Interventions to Reduce Readmissions due to Heart Failure Decompensation in Adults: a Systematic Review and Meta-analysis
por: Wilson Cañon-Montañez, et al.
Publicado: (2021) -
Efectividad de las intervenciones educativas con enfoque multifactorial y seguimiento vía telefónica sobre la rehospitalización en pacientes con insuficiencia cardiaca: revisión sistemática y meta-análisis
por: Flores L.,María Elena, et al.
Publicado: (2018)