Crop Mapping with Combined Use of European and Chinese Satellite Data
Agricultural landscapes are characterized by diversity and complexity, which makes crop mapping at a regional scale a top priority for different purposes such as administrative decisions and farming management. Project 32194 of the Dragon 4 Program was implemented to meet the requirements of crop ma...
Guardado en:
Autores principales: | Jinlong Fan, Pierre Defourny, Xiaoyu Zhang, Qinghan Dong, Limin Wang, Zhihao Qin, Mathilde De Vroey, Chunliang Zhao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8683e9f60a9c4bfa9755897279a855ae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Crop Rotation Modeling for Deep Learning-Based Parcel Classification from Satellite Time Series
por: Félix Quinton, et al.
Publicado: (2021) -
Integration of Sentinel 1 and Sentinel 2 Satellite Images for Crop Mapping
por: Shilan Felegari, et al.
Publicado: (2021) -
Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR Data
por: Subhadip Dey, et al.
Publicado: (2021) -
Biodiversity decline with increasing crop productivity in agricultural fields revealed by satellite remote sensing
por: Abdulhakim M. Abdi, et al.
Publicado: (2021) -
Detecting cocoa plantations in Côte d’Ivoire and Ghana and their implications on protected areas
por: Itohan-Osa Abu, et al.
Publicado: (2021)