Scalable and accurate method for neuronal ensemble detection in spiking neural networks.
We propose a novel, scalable, and accurate method for detecting neuronal ensembles from a population of spiking neurons. Our approach offers a simple yet powerful tool to study ensemble activity. It relies on clustering synchronous population activity (population vectors), allows the participation o...
Guardado en:
Autores principales: | Rubén Herzog, Arturo Morales, Soraya Mora, Joaquín Araya, María-José Escobar, Adrian G Palacios, Rodrigo Cofré |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/86864e33fb6740108547dd89be706d48 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accurate, scalable and integrative haplotype estimation
por: Olivier Delaneau, et al.
Publicado: (2019) -
Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture
por: Cheol Woo Park, et al.
Publicado: (2021) -
A Granger causality measure for point process models of ensemble neural spiking activity.
por: Sanggyun Kim, et al.
Publicado: (2011) -
Scalable and accurate deep learning with electronic health records
por: Alvin Rajkomar, et al.
Publicado: (2018) -
Recursive MAGUS: Scalable and accurate multiple sequence alignment.
por: Vladimir Smirnov
Publicado: (2021)