Incremental autoencoders for text streams clustering in social networks
Clustering data streams in order to detect trending topic on social networks is a chal- lenging task that interests the researchers in the big data field. In fact, analyzing such data needs several requirements to be addressed due to their large amount and evolving nature. For this purpose, we propo...
Guardado en:
Autores principales: | Amal Rekik, Salma Jamoussi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Graz University of Technology
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/869cc13eadc74773871e48e90135a230 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Interoperability of Multimedia Network Public Opinion Knowledge Base Group Based on Multisource Text Mining
por: Yanru Zhu
Publicado: (2021) -
The one-and-a-half sided parasocial relationship: The curious case of live streaming
por: Rachel Kowert, et al.
Publicado: (2021) -
MEMANFAATKAN ALGORITMA K-MEANS DALAM MENENTUKAN PEGAWAI YANG LAYAK MENGIKUTI ASESSMENT CENTER UNTUK CLUSTERING PROGRAM SDP
por: Iin Parlina, et al.
Publicado: (2018) -
DATA MINING: PENERAPAN RAPIDMINER DENGAN K-MEANS CLUSTER PADA DAERAH TERJANGKIT DEMAM BERDARAH DENGUE (DBD) BERDASARKAN PROVINSI
por: Kiki Fatmawati, et al.
Publicado: (2018) -
Novel Convolutional Restricted Boltzmann Machine manifold learning inspired dynamic user clustering hybrid precoding for millimeter-wave massive multiple-input multiple-output systems
por: Xiaoping Zhou, et al.
Publicado: (2021)