Externally-Triggered Activation and Inhibition of Optical Pulsating Regimes in Quantum-Dot Mode-locked Lasers
Abstract Controlled generation and inhibition of externally-triggered picosecond optical pulsating regimes are demonstrated experimentally in a quantum dot mode locked laser (QDMLL) subject to external injection of an amplitude modulated optical signal. This approach also allows full control and rep...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/86b054361c7f427fbd92d385c68c648d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:86b054361c7f427fbd92d385c68c648d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:86b054361c7f427fbd92d385c68c648d2021-12-02T11:40:17ZExternally-Triggered Activation and Inhibition of Optical Pulsating Regimes in Quantum-Dot Mode-locked Lasers10.1038/s41598-018-30758-22045-2322https://doaj.org/article/86b054361c7f427fbd92d385c68c648d2018-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-30758-2https://doaj.org/toc/2045-2322Abstract Controlled generation and inhibition of externally-triggered picosecond optical pulsating regimes are demonstrated experimentally in a quantum dot mode locked laser (QDMLL) subject to external injection of an amplitude modulated optical signal. This approach also allows full control and repeatability of the time windows of generated picosecond optical pulses; hence permitting to define precisely their temporal duration (from <1 ns spans) and repetition frequency (from sub-Hz to at least hundreds of MHz). The use of a monolithic QDMLL, operating at 1300 nm, provides a system with a very small footprint that is fully compatible with optical telecommunication networks. This offers excellent prospects for use in applications requiring the delivery of ultrashort optical pulses at precise time instants and at tunable rates, such as optical imaging, time-of-flight diagnostics and optical communication systems.Joshua RobertsonThorsten AckemannLuke F. LesterAntonio HurtadoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-9 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Joshua Robertson Thorsten Ackemann Luke F. Lester Antonio Hurtado Externally-Triggered Activation and Inhibition of Optical Pulsating Regimes in Quantum-Dot Mode-locked Lasers |
description |
Abstract Controlled generation and inhibition of externally-triggered picosecond optical pulsating regimes are demonstrated experimentally in a quantum dot mode locked laser (QDMLL) subject to external injection of an amplitude modulated optical signal. This approach also allows full control and repeatability of the time windows of generated picosecond optical pulses; hence permitting to define precisely their temporal duration (from <1 ns spans) and repetition frequency (from sub-Hz to at least hundreds of MHz). The use of a monolithic QDMLL, operating at 1300 nm, provides a system with a very small footprint that is fully compatible with optical telecommunication networks. This offers excellent prospects for use in applications requiring the delivery of ultrashort optical pulses at precise time instants and at tunable rates, such as optical imaging, time-of-flight diagnostics and optical communication systems. |
format |
article |
author |
Joshua Robertson Thorsten Ackemann Luke F. Lester Antonio Hurtado |
author_facet |
Joshua Robertson Thorsten Ackemann Luke F. Lester Antonio Hurtado |
author_sort |
Joshua Robertson |
title |
Externally-Triggered Activation and Inhibition of Optical Pulsating Regimes in Quantum-Dot Mode-locked Lasers |
title_short |
Externally-Triggered Activation and Inhibition of Optical Pulsating Regimes in Quantum-Dot Mode-locked Lasers |
title_full |
Externally-Triggered Activation and Inhibition of Optical Pulsating Regimes in Quantum-Dot Mode-locked Lasers |
title_fullStr |
Externally-Triggered Activation and Inhibition of Optical Pulsating Regimes in Quantum-Dot Mode-locked Lasers |
title_full_unstemmed |
Externally-Triggered Activation and Inhibition of Optical Pulsating Regimes in Quantum-Dot Mode-locked Lasers |
title_sort |
externally-triggered activation and inhibition of optical pulsating regimes in quantum-dot mode-locked lasers |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/86b054361c7f427fbd92d385c68c648d |
work_keys_str_mv |
AT joshuarobertson externallytriggeredactivationandinhibitionofopticalpulsatingregimesinquantumdotmodelockedlasers AT thorstenackemann externallytriggeredactivationandinhibitionofopticalpulsatingregimesinquantumdotmodelockedlasers AT lukeflester externallytriggeredactivationandinhibitionofopticalpulsatingregimesinquantumdotmodelockedlasers AT antoniohurtado externallytriggeredactivationandinhibitionofopticalpulsatingregimesinquantumdotmodelockedlasers |
_version_ |
1718395656633057280 |