Benchmarking graph neural networks for materials chemistry
Abstract Graph neural networks (GNNs) have received intense interest as a rapidly expanding class of machine learning models remarkably well-suited for materials applications. To date, a number of successful GNNs have been proposed and demonstrated for systems ranging from crystal stability to elect...
Enregistré dans:
Auteurs principaux: | , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/86b6e1b70bf24df7bb74a248da2c8e25 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|