Prediksi Cuaca Kota Surabaya Menggunakan Autoregressive Integrated Moving Average (Arima) Box Jenkins dan Kalman Filter
Season changes conditions in Indonesia cause many disasters such as landslides, floods and whirlwinds and even hail. Extreme weather conditions that occur, it is better to remain alert to anticipate the various possibilities that occur and to reduce and minimize the impact that can harm the people....
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Department of Mathematics, UIN Sunan Ampel Surabaya
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/86d0b4772cc141d3a932e2cdccdd70d4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:86d0b4772cc141d3a932e2cdccdd70d4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:86d0b4772cc141d3a932e2cdccdd70d42021-12-02T17:37:08ZPrediksi Cuaca Kota Surabaya Menggunakan Autoregressive Integrated Moving Average (Arima) Box Jenkins dan Kalman Filter2527-31592527-316710.15642/mantik.2018.4.1.59-67https://doaj.org/article/86d0b4772cc141d3a932e2cdccdd70d42018-05-01T00:00:00Zhttp://jurnalsaintek.uinsby.ac.id/index.php/mantik/article/view/314https://doaj.org/toc/2527-3159https://doaj.org/toc/2527-3167Season changes conditions in Indonesia cause many disasters such as landslides, floods and whirlwinds and even hail. Extreme weather conditions that occur, it is better to remain alert to anticipate the various possibilities that occur and to reduce and minimize the impact that can harm the people. The design of weather prediction system in this research using Autoregressive Integrated Moving Average ARIMA Box Jenkins model and Kalman filter with the aim to predict the increasingly extreme weather of Surabaya city at the end of 2017. In this research, weather prediction focused on humidity, temperature, and velocity wind with results 5 days later. The prediction of Surabaya city weather using ARIMA method - Kalman filter obtained the smallest error goal (error MAPE) of 0.000014 each for the prediction of humidity, 0.000037 for temperature prediction, and 0.0123 for wind speed prediction.Nurissaidah UlinnuhaYuniar FaridaDepartment of Mathematics, UIN Sunan Ampel SurabayaarticleWeather Prediction, ARIMA, Kalman Filter, PolynomialMathematicsQA1-939ENMantik: Jurnal Matematika, Vol 4, Iss 1, Pp 59-67 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Weather Prediction, ARIMA, Kalman Filter, Polynomial Mathematics QA1-939 |
spellingShingle |
Weather Prediction, ARIMA, Kalman Filter, Polynomial Mathematics QA1-939 Nurissaidah Ulinnuha Yuniar Farida Prediksi Cuaca Kota Surabaya Menggunakan Autoregressive Integrated Moving Average (Arima) Box Jenkins dan Kalman Filter |
description |
Season changes conditions in Indonesia cause many disasters such as landslides, floods and whirlwinds and even hail. Extreme weather conditions that occur, it is better to remain alert to anticipate the various possibilities that occur and to reduce and minimize the impact that can harm the people. The design of weather prediction system in this research using Autoregressive Integrated Moving Average ARIMA Box Jenkins model and Kalman filter with the aim to predict the increasingly extreme weather of Surabaya city at the end of 2017. In this research, weather prediction focused on humidity, temperature, and velocity wind with results 5 days later. The prediction of Surabaya city weather using ARIMA method - Kalman filter obtained the smallest error goal (error MAPE) of 0.000014 each for the prediction of humidity, 0.000037 for temperature prediction, and 0.0123 for wind speed prediction. |
format |
article |
author |
Nurissaidah Ulinnuha Yuniar Farida |
author_facet |
Nurissaidah Ulinnuha Yuniar Farida |
author_sort |
Nurissaidah Ulinnuha |
title |
Prediksi Cuaca Kota Surabaya Menggunakan Autoregressive Integrated Moving Average (Arima) Box Jenkins dan Kalman Filter |
title_short |
Prediksi Cuaca Kota Surabaya Menggunakan Autoregressive Integrated Moving Average (Arima) Box Jenkins dan Kalman Filter |
title_full |
Prediksi Cuaca Kota Surabaya Menggunakan Autoregressive Integrated Moving Average (Arima) Box Jenkins dan Kalman Filter |
title_fullStr |
Prediksi Cuaca Kota Surabaya Menggunakan Autoregressive Integrated Moving Average (Arima) Box Jenkins dan Kalman Filter |
title_full_unstemmed |
Prediksi Cuaca Kota Surabaya Menggunakan Autoregressive Integrated Moving Average (Arima) Box Jenkins dan Kalman Filter |
title_sort |
prediksi cuaca kota surabaya menggunakan autoregressive integrated moving average (arima) box jenkins dan kalman filter |
publisher |
Department of Mathematics, UIN Sunan Ampel Surabaya |
publishDate |
2018 |
url |
https://doaj.org/article/86d0b4772cc141d3a932e2cdccdd70d4 |
work_keys_str_mv |
AT nurissaidahulinnuha prediksicuacakotasurabayamenggunakanautoregressiveintegratedmovingaveragearimaboxjenkinsdankalmanfilter AT yuniarfarida prediksicuacakotasurabayamenggunakanautoregressiveintegratedmovingaveragearimaboxjenkinsdankalmanfilter |
_version_ |
1718379893778022400 |