Deep learning early stopping for non-degenerate ghost imaging
Abstract Quantum ghost imaging offers many advantages over classical imaging, including the ability to probe an object with one wavelength and record the image with another (non-degenerate ghost imaging), but suffers from slow image reconstruction due to sparsity and probabilistic arrival positions...
Guardado en:
Autores principales: | Chané Moodley, Bereneice Sephton, Valeria Rodríguez-Fajardo, Andrew Forbes |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/86e61cc9ded94cc88b34a3e28f3530c2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DeepGhost: real-time computational ghost imaging via deep learning
por: Saad Rizvi, et al.
Publicado: (2020) -
Counterfactual ghost imaging
por: Jonte R. Hance, et al.
Publicado: (2021) -
Gradient-Descent-like Ghost Imaging
por: Wen-Kai Yu, et al.
Publicado: (2021) -
Experimental demonstration of spectral domain computational ghost imaging
por: Piotr Ryczkowski, et al.
Publicado: (2021) -
Ghosts of Revolution
por: Farideh Goldin
Publicado: (2012)