A Coastal Flood Early-Warning System Based on Offshore Sea State Forecasts and Artificial Neural Networks
An integrated methodological approach to the development of a coastal flood early-warning system is presented in this paper to improve societal preparedness for coastal flood events. The approach consists of two frameworks, namely the Hindcast Framework and the Forecast Framework. The aim of the for...
Enregistré dans:
Auteurs principaux: | Michalis Chondros, Anastasios Metallinos, Andreas Papadimitriou, Constantine Memos, Vasiliki Tsoukala |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/86f66d3a871d47b49d2e857a93e17c89 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A User-Oriented Local Coastal Flooding Early Warning System Using Metamodelling Techniques
par: Déborah Idier, et autres
Publié: (2021) -
Geological Oceanography of the Pliocene Warm Period: A Review with Predictions on the Future of Global Warming
par: Markes E. Johnson
Publié: (2021) -
Unsteady Linearisation of Bed Shear Stress for Idealised Storm Surge Modelling
par: Pieter C. Roos, et autres
Publié: (2021) -
Assessment of Extreme Storm Surges over the Changjiang River Estuary from a Wave-Current Coupled Model
par: Yutao Chi, et autres
Publié: (2021) -
Offshore and Onshore Wave Energy Converters: Engineering and Environmental Features
par: Luca Cavallaro, et autres
Publié: (2021)