A novel probabilistic generator for large-scale gene association networks
<h4>Motivation</h4> Gene expression data provide an opportunity for reverse-engineering gene-gene associations using network inference methods. However, it is difficult to assess the performance of these methods because the true underlying network is unknown in real data. Current benchma...
Enregistré dans:
Auteurs principaux: | Tyler Grimes, Somnath Datta |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/86ffeeb6adbd4e4a92b3d3d0711f5c2f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A novel probabilistic generator for large-scale gene association networks.
par: Tyler Grimes, et autres
Publié: (2021) -
Synthetic data generation with probabilistic Bayesian Networks
par: Grigoriy Gogoshin, et autres
Publié: (2021) -
optPBN: an optimisation toolbox for probabilistic Boolean networks.
par: Panuwat Trairatphisan, et autres
Publié: (2014) -
Probabilistic diffusion tractography reveals improvement of structural network in musicians.
par: Jianfu Li, et autres
Publié: (2014) -
The generative capacity of probabilistic protein sequence models
par: Francisco McGee, et autres
Publié: (2021)