A strain-driven thermotropic phase boundary in BaTiO3 at room temperature by cycling compression
In BaTiO3 single crystals, we observed a strain-driven phase transition from the tetragonal phase to the tetragonal-orthorhombic phase boundary which can be introduced by slow cycling compressions (a loading of up to 0.5 GPa, strain rate of 10−4 s−1, and 100 cycles) at room temperature. Different fr...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIP Publishing LLC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/87058c9da5d74b1686855ffad0dd87d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In BaTiO3 single crystals, we observed a strain-driven phase transition from the tetragonal phase to the tetragonal-orthorhombic phase boundary which can be introduced by slow cycling compressions (a loading of up to 0.5 GPa, strain rate of 10−4 s−1, and 100 cycles) at room temperature. Different from the well-known tetragonal to cubic phase transition under stress (∼2 GPa), it only takes place locally around bent 90° domain walls. The inhomogeneous local stress and electrical fields as well as the mobile point defect pinning effect contribute to the phase re-entrance. Through comparison experiments by in situ synchrotron x-ray diffraction, Raman scattering, and (scanning) transmission electron microscopy, we explored the phase transition mechanism. Based on that, we developed a mechanical method to obtain well-stabilized high-density thermotropic phase boundary structures (with tetragonal, orthorhombic, and bridging monoclinic phases) in BaTiO3 for potential applications. |
---|