Vertical Cylinder-to-Lamella Transition in Thin Block Copolymer Films Induced by In-Plane Electric Field
Morphological transition between hexagonal and lamellar patterns in thin polystyrene–<i>block</i>–poly(4-vinyl pyridine) films simultaneously exposed to a strong in-plane electric field and saturated solvent vapor is studied with atomic force and scanning electron microscopy. In these co...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/870855a4a8e74dc5b723c0efe4f127fe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:870855a4a8e74dc5b723c0efe4f127fe |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:870855a4a8e74dc5b723c0efe4f127fe2021-11-25T18:48:46ZVertical Cylinder-to-Lamella Transition in Thin Block Copolymer Films Induced by In-Plane Electric Field10.3390/polym132239592073-4360https://doaj.org/article/870855a4a8e74dc5b723c0efe4f127fe2021-11-01T00:00:00Zhttps://www.mdpi.com/2073-4360/13/22/3959https://doaj.org/toc/2073-4360Morphological transition between hexagonal and lamellar patterns in thin polystyrene–<i>block</i>–poly(4-vinyl pyridine) films simultaneously exposed to a strong in-plane electric field and saturated solvent vapor is studied with atomic force and scanning electron microscopy. In these conditions, standing cylinders made of 4-vinyl pyridine blocks arrange into threads up to tens of microns long along the field direction and then partially merge into standing lamellas. In the course of rearrangement, the copolymer remains strongly segregated, with the minor component domains keeping connectivity between the film surfaces. The ordering tendency becomes more pronounced if the cylinders are doped with Au nanorods, which can increase their dielectric permittivity. Non-selective chloroform vapor works particularly well, though it causes partial etching of the indium tin oxide cathode. On the contrary, 1,4-dioxane vapor selective to polystyrene matrix does not allow for any morphological changes.Alexey S. MerekalovYaroslav I. DerikovVladimir V. ArtemovAlexander A. EzhovYaroslav V. KudryavtsevMDPI AGarticleblock copolymersmicrophase separationelectric fieldsolvent vaporatomic force microscopyOrganic chemistryQD241-441ENPolymers, Vol 13, Iss 3959, p 3959 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
block copolymers microphase separation electric field solvent vapor atomic force microscopy Organic chemistry QD241-441 |
spellingShingle |
block copolymers microphase separation electric field solvent vapor atomic force microscopy Organic chemistry QD241-441 Alexey S. Merekalov Yaroslav I. Derikov Vladimir V. Artemov Alexander A. Ezhov Yaroslav V. Kudryavtsev Vertical Cylinder-to-Lamella Transition in Thin Block Copolymer Films Induced by In-Plane Electric Field |
description |
Morphological transition between hexagonal and lamellar patterns in thin polystyrene–<i>block</i>–poly(4-vinyl pyridine) films simultaneously exposed to a strong in-plane electric field and saturated solvent vapor is studied with atomic force and scanning electron microscopy. In these conditions, standing cylinders made of 4-vinyl pyridine blocks arrange into threads up to tens of microns long along the field direction and then partially merge into standing lamellas. In the course of rearrangement, the copolymer remains strongly segregated, with the minor component domains keeping connectivity between the film surfaces. The ordering tendency becomes more pronounced if the cylinders are doped with Au nanorods, which can increase their dielectric permittivity. Non-selective chloroform vapor works particularly well, though it causes partial etching of the indium tin oxide cathode. On the contrary, 1,4-dioxane vapor selective to polystyrene matrix does not allow for any morphological changes. |
format |
article |
author |
Alexey S. Merekalov Yaroslav I. Derikov Vladimir V. Artemov Alexander A. Ezhov Yaroslav V. Kudryavtsev |
author_facet |
Alexey S. Merekalov Yaroslav I. Derikov Vladimir V. Artemov Alexander A. Ezhov Yaroslav V. Kudryavtsev |
author_sort |
Alexey S. Merekalov |
title |
Vertical Cylinder-to-Lamella Transition in Thin Block Copolymer Films Induced by In-Plane Electric Field |
title_short |
Vertical Cylinder-to-Lamella Transition in Thin Block Copolymer Films Induced by In-Plane Electric Field |
title_full |
Vertical Cylinder-to-Lamella Transition in Thin Block Copolymer Films Induced by In-Plane Electric Field |
title_fullStr |
Vertical Cylinder-to-Lamella Transition in Thin Block Copolymer Films Induced by In-Plane Electric Field |
title_full_unstemmed |
Vertical Cylinder-to-Lamella Transition in Thin Block Copolymer Films Induced by In-Plane Electric Field |
title_sort |
vertical cylinder-to-lamella transition in thin block copolymer films induced by in-plane electric field |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/870855a4a8e74dc5b723c0efe4f127fe |
work_keys_str_mv |
AT alexeysmerekalov verticalcylindertolamellatransitioninthinblockcopolymerfilmsinducedbyinplaneelectricfield AT yaroslaviderikov verticalcylindertolamellatransitioninthinblockcopolymerfilmsinducedbyinplaneelectricfield AT vladimirvartemov verticalcylindertolamellatransitioninthinblockcopolymerfilmsinducedbyinplaneelectricfield AT alexanderaezhov verticalcylindertolamellatransitioninthinblockcopolymerfilmsinducedbyinplaneelectricfield AT yaroslavvkudryavtsev verticalcylindertolamellatransitioninthinblockcopolymerfilmsinducedbyinplaneelectricfield |
_version_ |
1718410657224720384 |