Detection of Preventable Fetal Distress During Labor From Scanned Cardiotocogram Tracings Using Deep Learning
Despite broad application during labor and delivery, there remains considerable debate about the value of electronic fetal monitoring (EFM). EFM includes the surveillance of fetal heart rate (FHR) patterns in conjunction with the mother's uterine contractions, providing a wealth of data about f...
Enregistré dans:
Auteurs principaux: | Martin G. Frasch, Shadrian B. Strong, David Nilosek, Joshua Leaverton, Barry S. Schifrin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Frontiers Media S.A.
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/870863a945dd4e5e959b9a25dcea6bd7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Sequentially Delineation of Rooftops with Holes from VHR Aerial Images Using a Convolutional Recurrent Neural Network
par: Wei Huang, et autres
Publié: (2021) -
DIAROP: Automated Deep Learning-Based Diagnostic Tool for Retinopathy of Prematurity
par: Omneya Attallah
Publié: (2021) -
Fused-Deep-Features Based Grape Leaf Disease Diagnosis
par: Yun Peng, et autres
Publié: (2021) -
Remote Sensing Scene Image Classification Based on Dense Fusion of Multi-level Features
par: Cuiping Shi, et autres
Publié: (2021) -
Using a Hybrid Neural Network Model DCNN–LSTM for Image-Based Nitrogen Nutrition Diagnosis in Muskmelon
par: Liying Chang, et autres
Publié: (2021)