Detection of Preventable Fetal Distress During Labor From Scanned Cardiotocogram Tracings Using Deep Learning
Despite broad application during labor and delivery, there remains considerable debate about the value of electronic fetal monitoring (EFM). EFM includes the surveillance of fetal heart rate (FHR) patterns in conjunction with the mother's uterine contractions, providing a wealth of data about f...
Guardado en:
Autores principales: | Martin G. Frasch, Shadrian B. Strong, David Nilosek, Joshua Leaverton, Barry S. Schifrin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/870863a945dd4e5e959b9a25dcea6bd7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sequentially Delineation of Rooftops with Holes from VHR Aerial Images Using a Convolutional Recurrent Neural Network
por: Wei Huang, et al.
Publicado: (2021) -
DIAROP: Automated Deep Learning-Based Diagnostic Tool for Retinopathy of Prematurity
por: Omneya Attallah
Publicado: (2021) -
Fused-Deep-Features Based Grape Leaf Disease Diagnosis
por: Yun Peng, et al.
Publicado: (2021) -
Remote Sensing Scene Image Classification Based on Dense Fusion of Multi-level Features
por: Cuiping Shi, et al.
Publicado: (2021) -
Using a Hybrid Neural Network Model DCNN–LSTM for Image-Based Nitrogen Nutrition Diagnosis in Muskmelon
por: Liying Chang, et al.
Publicado: (2021)