Observation of Magnetic Radial Vortex Nucleation in a Multilayer Stack with Tunable Anisotropy

Abstract Recently discovered exotic magnetic configurations, namely magnetic solitons appearing in the presence of bulk or interfacial Dzyaloshinskii-Moriya Interaction (i-DMI), have excited scientists to explore their potential applications in emerging spintronic technologies such as race-track mag...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vedat Karakas, Aisha Gokce, Ali Taha Habiboglu, Sevdenur Arpaci, Kaan Ozbozduman, Ibrahim Cinar, Cenk Yanik, Riccardo Tomasello, Silvia Tacchi, Giulio Siracusano, Mario Carpentieri, Giovanni Finocchio, Thomas Hauet, Ozhan Ozatay
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/870eea367f1c439099e18f77957d908f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:870eea367f1c439099e18f77957d908f
record_format dspace
spelling oai:doaj.org-article:870eea367f1c439099e18f77957d908f2021-12-02T12:31:57ZObservation of Magnetic Radial Vortex Nucleation in a Multilayer Stack with Tunable Anisotropy10.1038/s41598-018-25392-x2045-2322https://doaj.org/article/870eea367f1c439099e18f77957d908f2018-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-25392-xhttps://doaj.org/toc/2045-2322Abstract Recently discovered exotic magnetic configurations, namely magnetic solitons appearing in the presence of bulk or interfacial Dzyaloshinskii-Moriya Interaction (i-DMI), have excited scientists to explore their potential applications in emerging spintronic technologies such as race-track magnetic memory, spin logic, radio frequency nano-oscillators and sensors. Such studies are motivated by their foreseeable advantages over conventional micro-magnetic structures due to their small size, topological stability and easy spin-torque driven manipulation with much lower threshold current densities giving way to improved storage capacity, and faster operation with efficient use of energy. In this work, we show that in the presence of i-DMI in Pt/CoFeB/Ti multilayers by tuning the magnetic anisotropy (both in-plane and perpendicular-to-plane) via interface engineering and postproduction treatments, we can stabilize a variety of magnetic configurations such as Néel skyrmions, horseshoes and most importantly, the recently predicted isolated radial vortices at room temperature and under zero bias field. Especially, the radial vortex state with its absolute convergence to or divergence from a single point can potentially offer exciting new applications such as particle trapping/detrapping in addition to magnetoresistive memories with efficient switching, where the radial vortex state can act as a source of spin-polarized current with radial polarization.Vedat KarakasAisha GokceAli Taha HabibogluSevdenur ArpaciKaan OzbozdumanIbrahim CinarCenk YanikRiccardo TomaselloSilvia TacchiGiulio SiracusanoMario CarpentieriGiovanni FinocchioThomas HauetOzhan OzatayNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-9 (2018)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Vedat Karakas
Aisha Gokce
Ali Taha Habiboglu
Sevdenur Arpaci
Kaan Ozbozduman
Ibrahim Cinar
Cenk Yanik
Riccardo Tomasello
Silvia Tacchi
Giulio Siracusano
Mario Carpentieri
Giovanni Finocchio
Thomas Hauet
Ozhan Ozatay
Observation of Magnetic Radial Vortex Nucleation in a Multilayer Stack with Tunable Anisotropy
description Abstract Recently discovered exotic magnetic configurations, namely magnetic solitons appearing in the presence of bulk or interfacial Dzyaloshinskii-Moriya Interaction (i-DMI), have excited scientists to explore their potential applications in emerging spintronic technologies such as race-track magnetic memory, spin logic, radio frequency nano-oscillators and sensors. Such studies are motivated by their foreseeable advantages over conventional micro-magnetic structures due to their small size, topological stability and easy spin-torque driven manipulation with much lower threshold current densities giving way to improved storage capacity, and faster operation with efficient use of energy. In this work, we show that in the presence of i-DMI in Pt/CoFeB/Ti multilayers by tuning the magnetic anisotropy (both in-plane and perpendicular-to-plane) via interface engineering and postproduction treatments, we can stabilize a variety of magnetic configurations such as Néel skyrmions, horseshoes and most importantly, the recently predicted isolated radial vortices at room temperature and under zero bias field. Especially, the radial vortex state with its absolute convergence to or divergence from a single point can potentially offer exciting new applications such as particle trapping/detrapping in addition to magnetoresistive memories with efficient switching, where the radial vortex state can act as a source of spin-polarized current with radial polarization.
format article
author Vedat Karakas
Aisha Gokce
Ali Taha Habiboglu
Sevdenur Arpaci
Kaan Ozbozduman
Ibrahim Cinar
Cenk Yanik
Riccardo Tomasello
Silvia Tacchi
Giulio Siracusano
Mario Carpentieri
Giovanni Finocchio
Thomas Hauet
Ozhan Ozatay
author_facet Vedat Karakas
Aisha Gokce
Ali Taha Habiboglu
Sevdenur Arpaci
Kaan Ozbozduman
Ibrahim Cinar
Cenk Yanik
Riccardo Tomasello
Silvia Tacchi
Giulio Siracusano
Mario Carpentieri
Giovanni Finocchio
Thomas Hauet
Ozhan Ozatay
author_sort Vedat Karakas
title Observation of Magnetic Radial Vortex Nucleation in a Multilayer Stack with Tunable Anisotropy
title_short Observation of Magnetic Radial Vortex Nucleation in a Multilayer Stack with Tunable Anisotropy
title_full Observation of Magnetic Radial Vortex Nucleation in a Multilayer Stack with Tunable Anisotropy
title_fullStr Observation of Magnetic Radial Vortex Nucleation in a Multilayer Stack with Tunable Anisotropy
title_full_unstemmed Observation of Magnetic Radial Vortex Nucleation in a Multilayer Stack with Tunable Anisotropy
title_sort observation of magnetic radial vortex nucleation in a multilayer stack with tunable anisotropy
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/870eea367f1c439099e18f77957d908f
work_keys_str_mv AT vedatkarakas observationofmagneticradialvortexnucleationinamultilayerstackwithtunableanisotropy
AT aishagokce observationofmagneticradialvortexnucleationinamultilayerstackwithtunableanisotropy
AT alitahahabiboglu observationofmagneticradialvortexnucleationinamultilayerstackwithtunableanisotropy
AT sevdenurarpaci observationofmagneticradialvortexnucleationinamultilayerstackwithtunableanisotropy
AT kaanozbozduman observationofmagneticradialvortexnucleationinamultilayerstackwithtunableanisotropy
AT ibrahimcinar observationofmagneticradialvortexnucleationinamultilayerstackwithtunableanisotropy
AT cenkyanik observationofmagneticradialvortexnucleationinamultilayerstackwithtunableanisotropy
AT riccardotomasello observationofmagneticradialvortexnucleationinamultilayerstackwithtunableanisotropy
AT silviatacchi observationofmagneticradialvortexnucleationinamultilayerstackwithtunableanisotropy
AT giuliosiracusano observationofmagneticradialvortexnucleationinamultilayerstackwithtunableanisotropy
AT mariocarpentieri observationofmagneticradialvortexnucleationinamultilayerstackwithtunableanisotropy
AT giovannifinocchio observationofmagneticradialvortexnucleationinamultilayerstackwithtunableanisotropy
AT thomashauet observationofmagneticradialvortexnucleationinamultilayerstackwithtunableanisotropy
AT ozhanozatay observationofmagneticradialvortexnucleationinamultilayerstackwithtunableanisotropy
_version_ 1718394225798676480