Study of cosmogenic activation in copper for rare event search experiments

Abstract Rare event search experiments using germanium detectors are performed in underground laboratories to minimize the background induced by cosmic rays. However, the cosmogenic activation of cupreous detector components on the ground generates long half-life radioisotopes and contributes to the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ze She, Zhi Zeng, Hao Ma, Qian Yue, Mingkun Jing, Jianping Cheng, Junli Li, Hui Zhang
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/8712cdbffb044d05b26920a5c5934b48
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Rare event search experiments using germanium detectors are performed in underground laboratories to minimize the background induced by cosmic rays. However, the cosmogenic activation of cupreous detector components on the ground generates long half-life radioisotopes and contributes to the background level. We measured cosmogenic activation with 142.50 kg of copper bricks after 504 days of exposure at an altitude of 2469.4 m outside the China Jinping Underground Laboratory (CJPL). The specific activities of the cosmogenic nuclides produced in the copper bricks were measured using a low-background germanium gamma-ray spectrometer at CJPL. The production rates at sea level, in units of nuclei/kg/day, were $${18.6 \pm 2.0}$$ 18.6 ± 2.0 for $${^{54}}$$ 54 Mn, $${9.9 \pm 1.3}$$ 9.9 ± 1.3 for $${^{56}}$$ 56 Co, $${48.3 \pm 5.5}$$ 48.3 ± 5.5 for $${^{57}}$$ 57 Co, $${51.8 \pm 2.5}$$ 51.8 ± 2.5 for $${^{58}}$$ 58 Co, and $${39.7 \pm 5.7}$$ 39.7 ± 5.7 for $${^{60}}$$ 60 Co. The measurement will help to constrain cosmogenic background estimation for rare event searches using copper as a detector structure and shielding material. Based on the measured production rates, the impact of the cosmogenic background in cupreous components of germanium detectors on the next generation CDEX-100 experiment was assessed with the expected exposure history above ground.