A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes
Proteomics is often used to map protein-drug interactions but identifying a drug’s protein targets along with the binding interfaces has not been achieved yet. Here, the authors integrate limited proteolysis and machine learning for the proteome-wide mapping of drug protein targets and binding sites...
Guardado en:
Autores principales: | Ilaria Piazza, Nigel Beaton, Roland Bruderer, Thomas Knobloch, Crystel Barbisan, Lucie Chandat, Alexander Sudau, Isabella Siepe, Oliver Rinner, Natalie de Souza, Paola Picotti, Lukas Reiter |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/871b54abd526490392ac0a0d980afcf1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reactive-site-centric chemoproteomics identifies a distinct class of deubiquitinase enzymes
por: David S. Hewings, et al.
Publicado: (2018) -
Chemoproteomic profiling reveals that cathepsin D off-target activity drives ocular toxicity of β-secretase inhibitors
por: Andrea M. Zuhl, et al.
Publicado: (2016) -
Classification of mouse B cell types using surfaceome proteotype maps
por: Marc van Oostrum, et al.
Publicado: (2019) -
Computational mass spectrometry-based proteomics.
por: Lukas Käll, et al.
Publicado: (2011) -
Systematic detection of functional proteoform groups from bottom-up proteomic datasets
por: Isabell Bludau, et al.
Publicado: (2021)