Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in <named-content content-type="genus-species">Pseudomonas putida</named-content> Reveals a General Principle Underlying Glycolytic Strategies in Bacteria

ABSTRACT Glucose-6-phosphate dehydrogenase (G6PDH) is widely distributed in nature and catalyzes the first committing step in the oxidative branch of the pentose phosphate (PP) pathway, feeding either the reductive PP or the Entner-Doudoroff pathway. Besides its role in central carbon metabolism, th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniel Christoph Volke, Karel Olavarría, Pablo Iván Nikel
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://doaj.org/article/871fb9d32b5a4e77831ee25a9404252a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:871fb9d32b5a4e77831ee25a9404252a
record_format dspace
spelling oai:doaj.org-article:871fb9d32b5a4e77831ee25a9404252a2021-12-02T19:22:27ZCofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in <named-content content-type="genus-species">Pseudomonas putida</named-content> Reveals a General Principle Underlying Glycolytic Strategies in Bacteria10.1128/mSystems.00014-212379-5077https://doaj.org/article/871fb9d32b5a4e77831ee25a9404252a2021-04-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00014-21https://doaj.org/toc/2379-5077ABSTRACT Glucose-6-phosphate dehydrogenase (G6PDH) is widely distributed in nature and catalyzes the first committing step in the oxidative branch of the pentose phosphate (PP) pathway, feeding either the reductive PP or the Entner-Doudoroff pathway. Besides its role in central carbon metabolism, this dehydrogenase provides reduced cofactors, thereby affecting redox balance. Although G6PDH is typically considered to display specificity toward NADP+, some variants accept NAD+ similarly or even preferentially. Furthermore, the number of G6PDH isozymes encoded in bacterial genomes varies from none to more than four orthologues. On this background, we systematically analyzed the interplay of the three G6PDH isoforms of the soil bacterium Pseudomonas putida KT2440 from genomic, genetic, and biochemical perspectives. P. putida represents an ideal model to tackle this endeavor, as its genome harbors gene orthologues for most dehydrogenases in central carbon metabolism. We show that the three G6PDHs of strain KT2440 have different cofactor specificities and that the isoforms encoded by zwfA and zwfB carry most of the activity, acting as metabolic “gatekeepers” for carbon sources that enter at different nodes of the biochemical network. Moreover, we demonstrate how multiplication of G6PDH isoforms is a widespread strategy in bacteria, correlating with the presence of an incomplete Embden-Meyerhof-Parnas pathway. The abundance of G6PDH isoforms in these species goes hand in hand with low NADP+ affinity, at least in one isozyme. We propose that gene duplication and relaxation in cofactor specificity is an evolutionary strategy toward balancing the relative production of NADPH and NADH. IMPORTANCE Protein families have likely arisen during evolution by gene duplication and divergence followed by neofunctionalization. While this phenomenon is well documented for catabolic activities (typical of environmental bacteria that colonize highly polluted niches), the coexistence of multiple isozymes in central carbon catabolism remains relatively unexplored. We have adopted the metabolically versatile soil bacterium Pseudomonas putida KT2440 as a model to interrogate the physiological and evolutionary significance of coexisting glucose-6-phosphate dehydrogenase (G6PDH) isozymes. Our results show that each of the three G6PDHs in this bacterium display distinct biochemical properties, especially at the level of cofactor preference, impacting bacterial physiology in a carbon source-dependent fashion. Furthermore, the presence of multiple G6PDHs differing in NAD+ or NADP+ specificity in bacterial species strongly correlates with their predominant metabolic lifestyle. Our findings support the notion that multiplication of genes encoding cofactor-dependent dehydrogenases is a general evolutionary strategy toward achieving redox balance according to the growth conditions.Daniel Christoph VolkeKarel OlavarríaPablo Iván NikelAmerican Society for Microbiologyarticlecentral carbon metabolismcofactor specificityglucose-6-phosphate dehydrogenaseglycolysisPseudomonas putidaredox balanceMicrobiologyQR1-502ENmSystems, Vol 6, Iss 2 (2021)
institution DOAJ
collection DOAJ
language EN
topic central carbon metabolism
cofactor specificity
glucose-6-phosphate dehydrogenase
glycolysis
Pseudomonas putida
redox balance
Microbiology
QR1-502
spellingShingle central carbon metabolism
cofactor specificity
glucose-6-phosphate dehydrogenase
glycolysis
Pseudomonas putida
redox balance
Microbiology
QR1-502
Daniel Christoph Volke
Karel Olavarría
Pablo Iván Nikel
Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in <named-content content-type="genus-species">Pseudomonas putida</named-content> Reveals a General Principle Underlying Glycolytic Strategies in Bacteria
description ABSTRACT Glucose-6-phosphate dehydrogenase (G6PDH) is widely distributed in nature and catalyzes the first committing step in the oxidative branch of the pentose phosphate (PP) pathway, feeding either the reductive PP or the Entner-Doudoroff pathway. Besides its role in central carbon metabolism, this dehydrogenase provides reduced cofactors, thereby affecting redox balance. Although G6PDH is typically considered to display specificity toward NADP+, some variants accept NAD+ similarly or even preferentially. Furthermore, the number of G6PDH isozymes encoded in bacterial genomes varies from none to more than four orthologues. On this background, we systematically analyzed the interplay of the three G6PDH isoforms of the soil bacterium Pseudomonas putida KT2440 from genomic, genetic, and biochemical perspectives. P. putida represents an ideal model to tackle this endeavor, as its genome harbors gene orthologues for most dehydrogenases in central carbon metabolism. We show that the three G6PDHs of strain KT2440 have different cofactor specificities and that the isoforms encoded by zwfA and zwfB carry most of the activity, acting as metabolic “gatekeepers” for carbon sources that enter at different nodes of the biochemical network. Moreover, we demonstrate how multiplication of G6PDH isoforms is a widespread strategy in bacteria, correlating with the presence of an incomplete Embden-Meyerhof-Parnas pathway. The abundance of G6PDH isoforms in these species goes hand in hand with low NADP+ affinity, at least in one isozyme. We propose that gene duplication and relaxation in cofactor specificity is an evolutionary strategy toward balancing the relative production of NADPH and NADH. IMPORTANCE Protein families have likely arisen during evolution by gene duplication and divergence followed by neofunctionalization. While this phenomenon is well documented for catabolic activities (typical of environmental bacteria that colonize highly polluted niches), the coexistence of multiple isozymes in central carbon catabolism remains relatively unexplored. We have adopted the metabolically versatile soil bacterium Pseudomonas putida KT2440 as a model to interrogate the physiological and evolutionary significance of coexisting glucose-6-phosphate dehydrogenase (G6PDH) isozymes. Our results show that each of the three G6PDHs in this bacterium display distinct biochemical properties, especially at the level of cofactor preference, impacting bacterial physiology in a carbon source-dependent fashion. Furthermore, the presence of multiple G6PDHs differing in NAD+ or NADP+ specificity in bacterial species strongly correlates with their predominant metabolic lifestyle. Our findings support the notion that multiplication of genes encoding cofactor-dependent dehydrogenases is a general evolutionary strategy toward achieving redox balance according to the growth conditions.
format article
author Daniel Christoph Volke
Karel Olavarría
Pablo Iván Nikel
author_facet Daniel Christoph Volke
Karel Olavarría
Pablo Iván Nikel
author_sort Daniel Christoph Volke
title Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in <named-content content-type="genus-species">Pseudomonas putida</named-content> Reveals a General Principle Underlying Glycolytic Strategies in Bacteria
title_short Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in <named-content content-type="genus-species">Pseudomonas putida</named-content> Reveals a General Principle Underlying Glycolytic Strategies in Bacteria
title_full Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in <named-content content-type="genus-species">Pseudomonas putida</named-content> Reveals a General Principle Underlying Glycolytic Strategies in Bacteria
title_fullStr Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in <named-content content-type="genus-species">Pseudomonas putida</named-content> Reveals a General Principle Underlying Glycolytic Strategies in Bacteria
title_full_unstemmed Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in <named-content content-type="genus-species">Pseudomonas putida</named-content> Reveals a General Principle Underlying Glycolytic Strategies in Bacteria
title_sort cofactor specificity of glucose-6-phosphate dehydrogenase isozymes in <named-content content-type="genus-species">pseudomonas putida</named-content> reveals a general principle underlying glycolytic strategies in bacteria
publisher American Society for Microbiology
publishDate 2021
url https://doaj.org/article/871fb9d32b5a4e77831ee25a9404252a
work_keys_str_mv AT danielchristophvolke cofactorspecificityofglucose6phosphatedehydrogenaseisozymesinnamedcontentcontenttypegenusspeciespseudomonasputidanamedcontentrevealsageneralprincipleunderlyingglycolyticstrategiesinbacteria
AT karelolavarria cofactorspecificityofglucose6phosphatedehydrogenaseisozymesinnamedcontentcontenttypegenusspeciespseudomonasputidanamedcontentrevealsageneralprincipleunderlyingglycolyticstrategiesinbacteria
AT pabloivannikel cofactorspecificityofglucose6phosphatedehydrogenaseisozymesinnamedcontentcontenttypegenusspeciespseudomonasputidanamedcontentrevealsageneralprincipleunderlyingglycolyticstrategiesinbacteria
_version_ 1718376750079016960