Aboveground biomass estimation of black locust planted forests with aspect variable using machine learning regression algorithms
An accurate estimation of forest aboveground biomass (AGB) is important for carbon accounting and afforestation policy making, and the aspect factors that affect forest stand growth are important to the accuracy of AGB estimation. In this study, aspect was incorporated as a variable into three machi...
Guardado en:
Autores principales: | Quanping Ye, Shichuan Yu, Jinliang Liu, Qingxia Zhao, Zhong Zhao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/872a76b962b5460ba1bcda3ae8a524fc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparison of individual tree aboveground biomass estimation in community forests using allometric equation and expansion factor in Magetan, East Java, Indonesia
por: Rahmanta Setiahadi
Publicado: (2021) -
Biomass production in mixed short rotation coppice with poplar‐hybrids (Populus spp.) and black locust (Robinia pseudoacacia L.)
por: Jessica Rebola‐Lichtenberg, et al.
Publicado: (2021) -
Estimation of tree height and aboveground biomass of coniferous forests in North China using stereo ZY-3, multispectral Sentinel-2, and DEM data
por: Yueting Wang, et al.
Publicado: (2021) -
Remote sensing inversion of grassland aboveground biomass based on high accuracy surface modeling
por: Wei Zhou, et al.
Publicado: (2021) -
The interaction of land-use history and tree species diversity in driving variation in the aboveground biomass of urban versus non-urban tropical forests
por: Erica R. Borges, et al.
Publicado: (2021)