The Pivotal Immunomodulatory and Anti-Inflammatory Effect of Histone-Lysine N-Methyltransferase in the Glioma Microenvironment: Its Biomarker and Therapy Potentials
Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase that encrypts a member of the Polycomb group (PcG) family. EZH2 forms a repressive chromatin structure which eventually participates in regulating the development as well as lineage propagation of stem cells and glioma progre...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/87661ef1376d46cdb13df34a53adc8ff |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase that encrypts a member of the Polycomb group (PcG) family. EZH2 forms a repressive chromatin structure which eventually participates in regulating the development as well as lineage propagation of stem cells and glioma progression. Posttranslational modifications are distinct approaches for the adjusted modification of EZH2 in the development of cancer. The amino acid succession of EZH2 protein makes it appropriate for covalent modifications, like phosphorylation, acetylation, O-GlcNAcylation, methylation, ubiquitination, and sumoylation. The glioma microenvironment is a dynamic component that comprises, besides glioma cells and glioma stem cells, a complex network that comprises diverse cell types like endothelial cells, astrocytes, and microglia as well as stromal components, soluble factors, and the extracellular membrane. EZH2 is well recognized as an essential modulator of cell invasion as well as metastasis in glioma. EZH2 oversecretion was implicated in the malfunction of several fundamental signaling pathways like Wnt/β-catenin signaling, Ras and NF-κB signaling, PI3K/AKT signaling, β-adrenergic receptor signaling, and bone morphogenetic protein as well as NOTCH signaling pathways. EZH2 was more secreted in glioblastoma multiforme than in low-grade gliomas as well as extremely secreted in U251 and U87 human glioma cells. Thus, the blockade of EZH2 expression in glioma could be of therapeutic value for patients with glioma. The suppression of EZH2 gene secretion was capable of reversing temozolomide resistance in patients with glioma. EZH2 is a promising therapeutic as well as prognostic biomarker for the treatment of glioma. |
---|