Multi-Channel Profile Based Artificial Neural Network Approach for Remaining Useful Life Prediction of Electric Vehicle Lithium-Ion Batteries
Remaining useful life (RUL) is a crucial assessment indicator to evaluate battery efficiency, robustness, and accuracy by determining battery failure occurrence in electric vehicle (EV) applications. RUL prediction is necessary for timely maintenance and replacement of the battery in EVs. This paper...
Guardado en:
Autores principales: | Shaheer Ansari, Afida Ayob, Molla Shahadat Hossain Lipu, Aini Hussain, Mohamad Hanif Md Saad |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8773643e040a41459c1978729eacd85c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Novel Electro-Thermal Model of Lithium-Ion Batteries Using Power as the Input
por: Bo Huang, et al.
Publicado: (2021) -
LITHIUM INSERTION INTO Li-Mn, Li-Fe AND Li-Co OXIDES
por: GAUTIER,JUAN LUIS, et al.
Publicado: (2001) -
LITHIUM COBALT SPINEL OXIDE: A STRUCTURAL AND ELECTROCHEMICAL STUDY
por: MEZA,ERIKA, et al.
Publicado: (2008) -
An Active Balancing Method Based on SOC and Capacitance for Lithium-Ion Batteries in Electric Vehicles
por: Renxiong Liu, et al.
Publicado: (2021) -
Recent Advances and Perspectives in Lithium−Sulfur Pouch Cells
por: Weifeng Zhang, et al.
Publicado: (2021)