Fish ecotyping based on machine learning and inferred network analysis of chemical and physical properties
Abstract Functional diversity rather than species richness is critical for the understanding of ecological patterns and processes. This study aimed to develop novel integrated analytical strategies for the functional characterization of fish diversity based on the quantification, prediction and inte...
Enregistré dans:
Auteurs principaux: | Feifei Wei, Kengo Ito, Kenji Sakata, Taiga Asakura, Yasuhiro Date, Jun Kikuchi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/877e9d50a9e24c68a5002c8b0448a1d4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Systemic Homeostasis in Metabolome, Ionome, and Microbiome of Wild Yellowfin Goby in Estuarine Ecosystem
par: Feifei Wei, et autres
Publié: (2018) -
Microbiological, physical and chemical properties of joruk (fermented fish product) with different levels of salt concentration
par: Dyah Koesoemawardani, et autres
Publié: (2020) -
Changes in Soil Physical and Chemical Properties during Vegetation Succession on Miyake-jima Island
par: Xinhao Peng, et autres
Publié: (2021) -
Spatial variability of soil chemical attributes and productivity and the chemical and physical properties of oranges
par: Nicolau,Rafaela F, et autres
Publié: (2014) -
Analysis of body condition indices reveals different ecotypes of the Antillean manatee
par: D. N. Castelblanco-Martínez, et autres
Publié: (2021)