Measures counteracting 2016 spread of vaccine-derived poliomyelitis virus type 2 in Russian Federation

Since April 2016 after global cessation of using trivalent oral poliovirus vaccine (tOPV) and switch to bivalent OPV consisting of polioviruses types 1 and 3 (the “switch”), any isolation of type 2 poliovirus has been regarded as an event of extreme importance requiring investigation, risk assessmen...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. Yu. Popova, E. B. Ezhlova, A. A. Melnikova, N. S. Morozova, Yu. M. Mikhailova, O. E. Ivanova, L. I. Kozlovskaya, T. P. Eremeeva, A. P. Gmyl, E. A. Korotkova, O. Yu. Baykova, A. Yu. Krasota, А. V. Ivanenko, M. S. Yarmolskaya, I. V. Kovalchuk, E. N. Romanenko
Formato: article
Lenguaje:RU
Publicado: Sankt-Peterburg : NIIÈM imeni Pastera 2020
Materias:
Acceso en línea:https://doaj.org/article/8787be3f9cf6414b9faecebe3649d002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Since April 2016 after global cessation of using trivalent oral poliovirus vaccine (tOPV) and switch to bivalent OPV consisting of polioviruses types 1 and 3 (the “switch”), any isolation of type 2 poliovirus has been regarded as an event of extreme importance requiring investigation, risk assessment and decision making. In 2016, 2 cases of isolated vaccine-derived poliovirus type 2 from healthy children was registered in Russia. Our study was aimed at on the assessing a risk of further spread of vaccine-derived poliovirus type 2 and provide measures for preventing its further spread based on epidemiological investigation and genetic characteristics of the isolated viruses. The cases were revealed within the surveillance program for poliomyelitis and acute flaccid paralysis syndrome conducted in the Russian Federation. The laboratory investigation was carried out in accordance with the algorithm adopted in the Russian Federation and recommended by the WHO standards: virus isolation on RD, L20B and Hep2C cell cultures, identification in the neutralization reaction, intratyping differentiation by using RT-PCR in real-time mode, sequencing of the poliovirus genome fragments encoding the VP1 protein. A risk assessment for spread of vaccine-derived poliovirus type 2 was performed in accordance with the WHO recommendations. There was uncovered a genetic relationship between virus strains isolated in September and December from unvaccinated Moscow resident boy (1 year old) who arrived from the Chechen Republic and from unvaccinated girl resident of the Chechen Republic (1 year old) with impaired humoral and cellular immunity. The virus strains were found to bear 10 and 13 genomic nucleotide substitutions, respectively, at the site encoding the VP1 protein compared with the Sabin type 2 vaccine strain that allowed to classify them as vaccine-derived polioviruses. In particular, both virus strains were shown to originate from the type 2 strain presented in the tOPV used shortly before the “switch”. Epidemiological investigation revealed family ties and probable contact between both children in the same premises. A series of organizational and vaccination measures was undertaken, as well as polio surveillance was strengthened in the region. No new type 2 polioviruses of vaccine origin were detected in the territory of the Chechen Republic during 18-month monitoring follow-up. The risk assessment of spread for vaccine-derived poliovirus type 2 in a region, Russian Federation as well as cross-boundary spread identified it as “low,” requiring no use of type 2 monovalent OPV. Such experience for countermeasures may be taken into account to oppose the risks before and after the global certification for poliomyelitis eradication.