Impact of the Double Mutants on Spike Protein of SARS-CoV-2 B.1.617 Lineage on the Human ACE2 Receptor Binding: A Structural Insight
The recent emergence of novel SARS-CoV-2 variants has threatened the efforts to contain the COVID-19 pandemic. The emergence of these “variants of concern” has increased immune escape and has supplanted the ancestral strains. The novel variants harbored by the B.1.617 lineage (kappa and delta) carry...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/879cd0823ef04ae89f20e482c6a154ba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:879cd0823ef04ae89f20e482c6a154ba |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:879cd0823ef04ae89f20e482c6a154ba2021-11-25T19:14:17ZImpact of the Double Mutants on Spike Protein of SARS-CoV-2 B.1.617 Lineage on the Human ACE2 Receptor Binding: A Structural Insight10.3390/v131122951999-4915https://doaj.org/article/879cd0823ef04ae89f20e482c6a154ba2021-11-01T00:00:00Zhttps://www.mdpi.com/1999-4915/13/11/2295https://doaj.org/toc/1999-4915The recent emergence of novel SARS-CoV-2 variants has threatened the efforts to contain the COVID-19 pandemic. The emergence of these “variants of concern” has increased immune escape and has supplanted the ancestral strains. The novel variants harbored by the B.1.617 lineage (kappa and delta) carry mutations within the receptor-binding domain of spike (S) protein (L452R + E484Q and L452R + T478K), the region binding to the host receptor. The double mutations carried by these novel variants are primarily responsible for an upsurge number of COVID-19 cases in India. In this study, we thoroughly investigated the impact of these double mutations on the binding capability to the human host receptor. We performed several structural analyses and found that the studied double mutations increase the binding affinity of the spike protein to the human host receptor (ACE2). Furthermore, our study showed that these double mutants might be a dominant contributor enhancing the receptor-binding affinity of SARS-CoV-2 and consequently making it more stable. We also investigated the impact of these mutations on the binding affinity of two monoclonal antibodies (Abs) (2-15 and LY-CoV555) and found that the presence of the double mutations also hinders its binding with the studied Abs. The principal component analysis, free energy landscape, intermolecular interaction, and other investigations provided a deeper structural insight to better understand the molecular mechanism responsible for increased viral transmissibility of these variants.Mohd Imran KhanMohammad Hassan BaigTanmoy MondalMohammed AlorabiTanuj SharmaJae-June DongJae Yong ChoMDPI AGarticleSARS-CoV-2COVID-19variantmolecular dynamicsdouble mutantdelta variantMicrobiologyQR1-502ENViruses, Vol 13, Iss 2295, p 2295 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
SARS-CoV-2 COVID-19 variant molecular dynamics double mutant delta variant Microbiology QR1-502 |
spellingShingle |
SARS-CoV-2 COVID-19 variant molecular dynamics double mutant delta variant Microbiology QR1-502 Mohd Imran Khan Mohammad Hassan Baig Tanmoy Mondal Mohammed Alorabi Tanuj Sharma Jae-June Dong Jae Yong Cho Impact of the Double Mutants on Spike Protein of SARS-CoV-2 B.1.617 Lineage on the Human ACE2 Receptor Binding: A Structural Insight |
description |
The recent emergence of novel SARS-CoV-2 variants has threatened the efforts to contain the COVID-19 pandemic. The emergence of these “variants of concern” has increased immune escape and has supplanted the ancestral strains. The novel variants harbored by the B.1.617 lineage (kappa and delta) carry mutations within the receptor-binding domain of spike (S) protein (L452R + E484Q and L452R + T478K), the region binding to the host receptor. The double mutations carried by these novel variants are primarily responsible for an upsurge number of COVID-19 cases in India. In this study, we thoroughly investigated the impact of these double mutations on the binding capability to the human host receptor. We performed several structural analyses and found that the studied double mutations increase the binding affinity of the spike protein to the human host receptor (ACE2). Furthermore, our study showed that these double mutants might be a dominant contributor enhancing the receptor-binding affinity of SARS-CoV-2 and consequently making it more stable. We also investigated the impact of these mutations on the binding affinity of two monoclonal antibodies (Abs) (2-15 and LY-CoV555) and found that the presence of the double mutations also hinders its binding with the studied Abs. The principal component analysis, free energy landscape, intermolecular interaction, and other investigations provided a deeper structural insight to better understand the molecular mechanism responsible for increased viral transmissibility of these variants. |
format |
article |
author |
Mohd Imran Khan Mohammad Hassan Baig Tanmoy Mondal Mohammed Alorabi Tanuj Sharma Jae-June Dong Jae Yong Cho |
author_facet |
Mohd Imran Khan Mohammad Hassan Baig Tanmoy Mondal Mohammed Alorabi Tanuj Sharma Jae-June Dong Jae Yong Cho |
author_sort |
Mohd Imran Khan |
title |
Impact of the Double Mutants on Spike Protein of SARS-CoV-2 B.1.617 Lineage on the Human ACE2 Receptor Binding: A Structural Insight |
title_short |
Impact of the Double Mutants on Spike Protein of SARS-CoV-2 B.1.617 Lineage on the Human ACE2 Receptor Binding: A Structural Insight |
title_full |
Impact of the Double Mutants on Spike Protein of SARS-CoV-2 B.1.617 Lineage on the Human ACE2 Receptor Binding: A Structural Insight |
title_fullStr |
Impact of the Double Mutants on Spike Protein of SARS-CoV-2 B.1.617 Lineage on the Human ACE2 Receptor Binding: A Structural Insight |
title_full_unstemmed |
Impact of the Double Mutants on Spike Protein of SARS-CoV-2 B.1.617 Lineage on the Human ACE2 Receptor Binding: A Structural Insight |
title_sort |
impact of the double mutants on spike protein of sars-cov-2 b.1.617 lineage on the human ace2 receptor binding: a structural insight |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/879cd0823ef04ae89f20e482c6a154ba |
work_keys_str_mv |
AT mohdimrankhan impactofthedoublemutantsonspikeproteinofsarscov2b1617lineageonthehumanace2receptorbindingastructuralinsight AT mohammadhassanbaig impactofthedoublemutantsonspikeproteinofsarscov2b1617lineageonthehumanace2receptorbindingastructuralinsight AT tanmoymondal impactofthedoublemutantsonspikeproteinofsarscov2b1617lineageonthehumanace2receptorbindingastructuralinsight AT mohammedalorabi impactofthedoublemutantsonspikeproteinofsarscov2b1617lineageonthehumanace2receptorbindingastructuralinsight AT tanujsharma impactofthedoublemutantsonspikeproteinofsarscov2b1617lineageonthehumanace2receptorbindingastructuralinsight AT jaejunedong impactofthedoublemutantsonspikeproteinofsarscov2b1617lineageonthehumanace2receptorbindingastructuralinsight AT jaeyongcho impactofthedoublemutantsonspikeproteinofsarscov2b1617lineageonthehumanace2receptorbindingastructuralinsight |
_version_ |
1718410168680579072 |