The Discovery of Actinospene, a New Polyene Macrolide with Broad Activity against Plant Fungal Pathogens and Pathogenic Yeasts
Phytopathogenic fungi infect crops, presenting a worldwide threat to agriculture. Polyene macrolides are one of the most effective antifungal agents applied in human therapy and crop protection. In this study, we found a cryptic polyene biosynthetic gene cluster in <i>Actinokineospora sphecios...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/87b71c72d34243659f90b09f1bb49d01 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Phytopathogenic fungi infect crops, presenting a worldwide threat to agriculture. Polyene macrolides are one of the most effective antifungal agents applied in human therapy and crop protection. In this study, we found a cryptic polyene biosynthetic gene cluster in <i>Actinokineospora spheciospongiae</i> by genome mining. Then, this gene cluster was activated via varying fermentation conditions, leading to the discovery of new polyene actinospene (<b>1</b>), which was subsequently isolated and its structure determined through spectroscopic techniques including UV, HR-MS, and NMR. The absolute configuration was confirmed by comparing the calculated and experimental electronic circular dichroism (ECD) spectra. Unlike known polyene macrolides, actinospene (<b>1</b>) demonstrated more versatile post-assembling decorations including two epoxide groups and an unusual isobutenyl side chain. In bioassays, actinospene (<b>1</b>) showed a broad spectrum of antifungal activity against several plant fungal pathogens as well as pathogenic yeasts with minimum inhibitory concentrations ranging between 2 and 10 μg/mL. |
---|