Gaussian noise up-sampling is better suited than SMOTE and ADASYN for clinical decision making
Abstract Clinical data sets have very special properties and suffer from many caveats in machine learning. They typically show a high-class imbalance, have a small number of samples and a large number of parameters, and have missing values. While feature selection approaches and imputation technique...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/87bc75d2f5c5416db4f6e104d9286f50 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|