Gaussian noise up-sampling is better suited than SMOTE and ADASYN for clinical decision making

Abstract Clinical data sets have very special properties and suffer from many caveats in machine learning. They typically show a high-class imbalance, have a small number of samples and a large number of parameters, and have missing values. While feature selection approaches and imputation technique...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jacqueline Beinecke, Dominik Heider
Formato: article
Lenguaje:EN
Publicado: BMC 2021
Materias:
Acceso en línea:https://doaj.org/article/87bc75d2f5c5416db4f6e104d9286f50
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!