Likelihood-based approach to discriminate mixtures of network models that vary in time
Abstract Discriminating between competing explanatory models as to which is more likely responsible for the growth of a network is a problem of fundamental importance for network science. The rules governing this growth are attributed to mechanisms such as preferential attachment and triangle closur...
Guardado en:
Autores principales: | Naomi A. Arnold, Raul J. Mondragón, Richard G. Clegg |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/87bf7a855812485985f136472c5354ad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques
por: Colin Griesbach, et al.
Publicado: (2021) -
Principal components analysis for mixtures with varying concentrations
por: Olena Sugakova, et al.
Publicado: (2021) -
Epidemic spreading in modular time-varying networks
por: Matthieu Nadini, et al.
Publicado: (2018) -
Topology characteristic analysis of vehicular ad hoc network based on time-varying complex network
por: Hong Zhang, et al.
Publicado: (2021) -
Dynamical efficiency for multimodal time-varying transportation networks
por: Leonardo Bellocchi, et al.
Publicado: (2021)