CircSERPINA3 regulates SERPINA3-mediated apoptosis, autophagy and aerobic glycolysis of prostate cancer cells by competitively binding to MiR-653-5p and recruiting BUD13

Abstract Background Prostate cancer (PCa) belongs to an epithelial malignancy that occurs in the prostate gland and is the most common malignancy of the male genitourinary system. Referring to related literature, circSERPINA3 has been reported to be up-regulated in PCa. However, its biological funct...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zengshu Xing, Sailian Li, Zhenxiang Liu, Chong Zhang, Zhiming Bai
Formato: article
Lenguaje:EN
Publicado: BMC 2021
Materias:
R
Acceso en línea:https://doaj.org/article/87d008945f604d588c0d9bff66ce9fd1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Background Prostate cancer (PCa) belongs to an epithelial malignancy that occurs in the prostate gland and is the most common malignancy of the male genitourinary system. Referring to related literature, circSERPINA3 has been reported to be up-regulated in PCa. However, its biological function remains unclear. Purpose This study aimed to reveal the specific role and relevant molecular mechanism of circSERPINA3 in PCa. Methods RT-qPCR was used to examine gene expression and functional analyses were conducted to verify the effect of circSERPINA3 on cell apoptosis, autophagy and aerobic glycolysis in PCa cells. Mechanism assays were applied to evaluate the relationship among circSERPINA3/miR-653-5p/SERPINA3/BUD13. Results CircSERPINA3 was verified to be up-regulated in PCa cells and to inhibit cell apoptosis while promoting aerobic glycolysis and autophagy in PCa cells. CircSERPINA3 and SERPINA3 were also testified to bind to miR-653-5p through a line of mechanism experiments. Moreover, it was discovered that circSERPINA3 could stabilize SERPINA3 mRNA via recruiting BUD13. Additionally, SERPINA3 was verified to inhibit cell apoptosis, while promoting aerobic glycolysis and autophagy in PCa cells. Conclusions Our study suggested that circSERPINA3 regulated apoptosis, autophagy and aerobic glycolysis of PCa cells by competitively binding to miR-653-5p and recruiting BUD13. Graphic abstract