Probing Multicellular Tissue Fusion of Cocultured Spheroids—A 3D‐Bioassembly Model
Abstract While decades of research have enriched the knowledge of how to grow cells into mature tissues, little is yet known about the next phase: fusing of these engineered tissues into larger functional structures. The specific effect of multicellular interfaces on tissue fusion remains largely un...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/87d9dbf986684de386293a43cd8fa3b3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:87d9dbf986684de386293a43cd8fa3b3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:87d9dbf986684de386293a43cd8fa3b32021-11-17T08:40:31ZProbing Multicellular Tissue Fusion of Cocultured Spheroids—A 3D‐Bioassembly Model2198-384410.1002/advs.202103320https://doaj.org/article/87d9dbf986684de386293a43cd8fa3b32021-11-01T00:00:00Zhttps://doi.org/10.1002/advs.202103320https://doaj.org/toc/2198-3844Abstract While decades of research have enriched the knowledge of how to grow cells into mature tissues, little is yet known about the next phase: fusing of these engineered tissues into larger functional structures. The specific effect of multicellular interfaces on tissue fusion remains largely unexplored. Here, a facile 3D‐bioassembly platform is introduced to primarily study fusion of cartilage–cartilage interfaces using spheroids formed from human mesenchymal stromal cells (hMSCs) and articular chondrocytes (hACs). 3D‐bioassembly of two adjacent hMSCs spheroids displays coordinated migration and noteworthy matrix deposition while the interface between two hAC tissues lacks both cells and type‐II collagen. Cocultures contribute to increased phenotypic stability in the fusion region while close initial contact between hMSCs and hACs (mixed) yields superior hyaline differentiation over more distant, indirect cocultures. This reduced ability of potent hMSCs to fuse with mature hAC tissue further underlines the major clinical challenge that is integration. Together, this data offer the first proof of an in vitro 3D‐model to reliably study lateral fusion mechanisms between multicellular spheroids and mature cartilage tissues. Ultimately, this high‐throughput 3D‐bioassembly model provides a bridge between understanding cellular differentiation and tissue fusion and offers the potential to probe fundamental biological mechanisms that underpin organogenesis.Gabriella C. J. LindbergXiaolin CuiMitchell DurhamLaura VeenendaalBenjamin S. SchonGary J. HooperKhoon S. LimTim B. F. WoodfieldWileyarticle3D‐bioassemblycartilage tissuescocultured spheroidshigh throughputmicrotissuesspheroid fusionScienceQENAdvanced Science, Vol 8, Iss 22, Pp n/a-n/a (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
3D‐bioassembly cartilage tissues cocultured spheroids high throughput microtissues spheroid fusion Science Q |
spellingShingle |
3D‐bioassembly cartilage tissues cocultured spheroids high throughput microtissues spheroid fusion Science Q Gabriella C. J. Lindberg Xiaolin Cui Mitchell Durham Laura Veenendaal Benjamin S. Schon Gary J. Hooper Khoon S. Lim Tim B. F. Woodfield Probing Multicellular Tissue Fusion of Cocultured Spheroids—A 3D‐Bioassembly Model |
description |
Abstract While decades of research have enriched the knowledge of how to grow cells into mature tissues, little is yet known about the next phase: fusing of these engineered tissues into larger functional structures. The specific effect of multicellular interfaces on tissue fusion remains largely unexplored. Here, a facile 3D‐bioassembly platform is introduced to primarily study fusion of cartilage–cartilage interfaces using spheroids formed from human mesenchymal stromal cells (hMSCs) and articular chondrocytes (hACs). 3D‐bioassembly of two adjacent hMSCs spheroids displays coordinated migration and noteworthy matrix deposition while the interface between two hAC tissues lacks both cells and type‐II collagen. Cocultures contribute to increased phenotypic stability in the fusion region while close initial contact between hMSCs and hACs (mixed) yields superior hyaline differentiation over more distant, indirect cocultures. This reduced ability of potent hMSCs to fuse with mature hAC tissue further underlines the major clinical challenge that is integration. Together, this data offer the first proof of an in vitro 3D‐model to reliably study lateral fusion mechanisms between multicellular spheroids and mature cartilage tissues. Ultimately, this high‐throughput 3D‐bioassembly model provides a bridge between understanding cellular differentiation and tissue fusion and offers the potential to probe fundamental biological mechanisms that underpin organogenesis. |
format |
article |
author |
Gabriella C. J. Lindberg Xiaolin Cui Mitchell Durham Laura Veenendaal Benjamin S. Schon Gary J. Hooper Khoon S. Lim Tim B. F. Woodfield |
author_facet |
Gabriella C. J. Lindberg Xiaolin Cui Mitchell Durham Laura Veenendaal Benjamin S. Schon Gary J. Hooper Khoon S. Lim Tim B. F. Woodfield |
author_sort |
Gabriella C. J. Lindberg |
title |
Probing Multicellular Tissue Fusion of Cocultured Spheroids—A 3D‐Bioassembly Model |
title_short |
Probing Multicellular Tissue Fusion of Cocultured Spheroids—A 3D‐Bioassembly Model |
title_full |
Probing Multicellular Tissue Fusion of Cocultured Spheroids—A 3D‐Bioassembly Model |
title_fullStr |
Probing Multicellular Tissue Fusion of Cocultured Spheroids—A 3D‐Bioassembly Model |
title_full_unstemmed |
Probing Multicellular Tissue Fusion of Cocultured Spheroids—A 3D‐Bioassembly Model |
title_sort |
probing multicellular tissue fusion of cocultured spheroids—a 3d‐bioassembly model |
publisher |
Wiley |
publishDate |
2021 |
url |
https://doaj.org/article/87d9dbf986684de386293a43cd8fa3b3 |
work_keys_str_mv |
AT gabriellacjlindberg probingmulticellulartissuefusionofcoculturedspheroidsa3dbioassemblymodel AT xiaolincui probingmulticellulartissuefusionofcoculturedspheroidsa3dbioassemblymodel AT mitchelldurham probingmulticellulartissuefusionofcoculturedspheroidsa3dbioassemblymodel AT lauraveenendaal probingmulticellulartissuefusionofcoculturedspheroidsa3dbioassemblymodel AT benjaminsschon probingmulticellulartissuefusionofcoculturedspheroidsa3dbioassemblymodel AT garyjhooper probingmulticellulartissuefusionofcoculturedspheroidsa3dbioassemblymodel AT khoonslim probingmulticellulartissuefusionofcoculturedspheroidsa3dbioassemblymodel AT timbfwoodfield probingmulticellulartissuefusionofcoculturedspheroidsa3dbioassemblymodel |
_version_ |
1718425682226184192 |