Damage Signaling by Extracellular Nucleotides: A Role for Cyclic Nucleotides in Elevating Cytosolic Free Calcium?
Extracellular ATP (eATP) is now held to be a constitutive damage-associated molecular pattern (DAMP) that is released by wounding, herbivory or pathogen attack. The concentration of eATP must be tightly regulated as either depletion or overload leads to cell death. In Arabidopsis thaliana, sensing o...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/87f40aa10b1e4209a287ddb48beba3d8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:87f40aa10b1e4209a287ddb48beba3d8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:87f40aa10b1e4209a287ddb48beba3d82021-12-02T10:48:28ZDamage Signaling by Extracellular Nucleotides: A Role for Cyclic Nucleotides in Elevating Cytosolic Free Calcium?1664-462X10.3389/fpls.2021.788514https://doaj.org/article/87f40aa10b1e4209a287ddb48beba3d82021-12-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fpls.2021.788514/fullhttps://doaj.org/toc/1664-462XExtracellular ATP (eATP) is now held to be a constitutive damage-associated molecular pattern (DAMP) that is released by wounding, herbivory or pathogen attack. The concentration of eATP must be tightly regulated as either depletion or overload leads to cell death. In Arabidopsis thaliana, sensing of eATP is by two plasma membrane legume-like lectin serine–threonine receptor kinases (P2K1 and P2K2), although other receptors are postulated. The transcriptional response to eATP is dominated by wound- and defense-response genes. Wounding and pathogen attack can involve the cyclic nucleotides cyclic AMP (cAMP) and cyclic GMP (cGMP) which, in common with eATP, can increase cytosolic-free Ca2+ as a second messenger. This perspective on DAMP signaling by eATP considers the possibility that the eATP pathway involves production of cyclic nucleotides to promote opening of cyclic nucleotide-gated channels and so elevates cytosolic-free Ca2+. In silico analysis of P2K1 and P2K2 reveals putative adenylyl and guanylyl kinase sequences that are the hallmarks of “moonlighting” receptors capable of cAMP and cGMP production. Further, an Arabidopsis loss of function cngc mutant was found to have an impaired increase in cytosolic-free Ca2+ in response to eATP. A link between eATP, cyclic nucleotides, and Ca2+ signaling therefore appears credible.Jian SunJian SunYouzheng NingLimin WangKatie A. WilkinsJulia M. DaviesFrontiers Media S.A.articlecalciumCNGCcyclasecyclic nucleotideDAMPATPPlant cultureSB1-1110ENFrontiers in Plant Science, Vol 12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
calcium CNGC cyclase cyclic nucleotide DAMP ATP Plant culture SB1-1110 |
spellingShingle |
calcium CNGC cyclase cyclic nucleotide DAMP ATP Plant culture SB1-1110 Jian Sun Jian Sun Youzheng Ning Limin Wang Katie A. Wilkins Julia M. Davies Damage Signaling by Extracellular Nucleotides: A Role for Cyclic Nucleotides in Elevating Cytosolic Free Calcium? |
description |
Extracellular ATP (eATP) is now held to be a constitutive damage-associated molecular pattern (DAMP) that is released by wounding, herbivory or pathogen attack. The concentration of eATP must be tightly regulated as either depletion or overload leads to cell death. In Arabidopsis thaliana, sensing of eATP is by two plasma membrane legume-like lectin serine–threonine receptor kinases (P2K1 and P2K2), although other receptors are postulated. The transcriptional response to eATP is dominated by wound- and defense-response genes. Wounding and pathogen attack can involve the cyclic nucleotides cyclic AMP (cAMP) and cyclic GMP (cGMP) which, in common with eATP, can increase cytosolic-free Ca2+ as a second messenger. This perspective on DAMP signaling by eATP considers the possibility that the eATP pathway involves production of cyclic nucleotides to promote opening of cyclic nucleotide-gated channels and so elevates cytosolic-free Ca2+. In silico analysis of P2K1 and P2K2 reveals putative adenylyl and guanylyl kinase sequences that are the hallmarks of “moonlighting” receptors capable of cAMP and cGMP production. Further, an Arabidopsis loss of function cngc mutant was found to have an impaired increase in cytosolic-free Ca2+ in response to eATP. A link between eATP, cyclic nucleotides, and Ca2+ signaling therefore appears credible. |
format |
article |
author |
Jian Sun Jian Sun Youzheng Ning Limin Wang Katie A. Wilkins Julia M. Davies |
author_facet |
Jian Sun Jian Sun Youzheng Ning Limin Wang Katie A. Wilkins Julia M. Davies |
author_sort |
Jian Sun |
title |
Damage Signaling by Extracellular Nucleotides: A Role for Cyclic Nucleotides in Elevating Cytosolic Free Calcium? |
title_short |
Damage Signaling by Extracellular Nucleotides: A Role for Cyclic Nucleotides in Elevating Cytosolic Free Calcium? |
title_full |
Damage Signaling by Extracellular Nucleotides: A Role for Cyclic Nucleotides in Elevating Cytosolic Free Calcium? |
title_fullStr |
Damage Signaling by Extracellular Nucleotides: A Role for Cyclic Nucleotides in Elevating Cytosolic Free Calcium? |
title_full_unstemmed |
Damage Signaling by Extracellular Nucleotides: A Role for Cyclic Nucleotides in Elevating Cytosolic Free Calcium? |
title_sort |
damage signaling by extracellular nucleotides: a role for cyclic nucleotides in elevating cytosolic free calcium? |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/87f40aa10b1e4209a287ddb48beba3d8 |
work_keys_str_mv |
AT jiansun damagesignalingbyextracellularnucleotidesaroleforcyclicnucleotidesinelevatingcytosolicfreecalcium AT jiansun damagesignalingbyextracellularnucleotidesaroleforcyclicnucleotidesinelevatingcytosolicfreecalcium AT youzhengning damagesignalingbyextracellularnucleotidesaroleforcyclicnucleotidesinelevatingcytosolicfreecalcium AT liminwang damagesignalingbyextracellularnucleotidesaroleforcyclicnucleotidesinelevatingcytosolicfreecalcium AT katieawilkins damagesignalingbyextracellularnucleotidesaroleforcyclicnucleotidesinelevatingcytosolicfreecalcium AT juliamdavies damagesignalingbyextracellularnucleotidesaroleforcyclicnucleotidesinelevatingcytosolicfreecalcium |
_version_ |
1718396660177960960 |