Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients
Abstract Accurate prediction of blood glucose variations in type 2 diabetes (T2D) will facilitate better glycemic control and decrease the occurrence of hypoglycemic episodes as well as the morbidity and mortality associated with T2D, hence increasing the quality of life of patients. Owing to the co...
Guardado en:
Autores principales: | Yixiang Deng, Lu Lu, Laura Aponte, Angeliki M. Angelidi, Vera Novak, George Em Karniadakis, Christos S. Mantzoros |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/880a0997af744705abe7461726f7f548 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A deep transfer learning approach for wearable sleep stage classification with photoplethysmography
por: Mustafa Radha, et al.
Publicado: (2021) -
Efficient cellular annotation of histopathology slides with real-time AI augmentation
por: James A. Diao, et al.
Publicado: (2021) -
A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan
por: Sercan Ö. Arık, et al.
Publicado: (2021) -
Biological data annotation via a human-augmenting AI-based labeling system
por: Douwe van der Wal, et al.
Publicado: (2021) -
Statistical uncertainty quantification to augment clinical decision support: a first implementation in sleep medicine
por: Dae Y. Kang, et al.
Publicado: (2021)