TSInsight: A Local-Global Attribution Framework for Interpretability in Time Series Data
With the rise in the employment of deep learning methods in safety-critical scenarios, interpretability is more essential than ever before. Although many different directions regarding interpretability have been explored for visual modalities, time series data has been neglected, with only a handful...
Guardado en:
Autores principales: | Shoaib Ahmed Siddiqui, Dominique Mercier, Andreas Dengel, Sheraz Ahmed |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/881a494110f14e32aac9ec0578d41da6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hyperspectral Remote Sensing Image Feature Representation Method Based on CAE-H with Nuclear Norm Constraint
por: Xiaodong Yu, et al.
Publicado: (2021) -
Unsupervised Deep Learning for Landslide Detection from Multispectral Sentinel-2 Imagery
por: Hejar Shahabi, et al.
Publicado: (2021) -
Part-Based Attribute-Aware Network for Person Re-Identification
por: Yan Zhang, et al.
Publicado: (2019) -
A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Compressed Sensing and Stacked Multi-Granularity Convolution Denoising Auto-Encoder
por: Chuang Liang, et al.
Publicado: (2021) -
Prediction and Chemical Interpretation of Singlet-Oxygen-Scavenging Activity of Small Molecule Compounds by Using Machine Learning
por: Taiki Fujimoto, et al.
Publicado: (2021)