Existence and asymptotical behavior of solutions for a quasilinear Choquard equation with singularity
In this study, we consider the following quasilinear Choquard equation with singularity −Δu+V(x)u−uΔu2+λ(Iα∗∣u∣p)∣u∣p−2u=K(x)u−γ,x∈RN,u>0,x∈RN,\left\{\begin{array}{ll}-\Delta u+V\left(x)u-u\Delta {u}^{2}+\lambda \left({I}_{\alpha }\ast | u{| }^{p})| u{| }^{p-2}u=K\left(x){u}^{-\gamma },\hspace{1....
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/881bae44ac984bafbb872dc63356aadd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this study, we consider the following quasilinear Choquard equation with singularity −Δu+V(x)u−uΔu2+λ(Iα∗∣u∣p)∣u∣p−2u=K(x)u−γ,x∈RN,u>0,x∈RN,\left\{\begin{array}{ll}-\Delta u+V\left(x)u-u\Delta {u}^{2}+\lambda \left({I}_{\alpha }\ast | u{| }^{p})| u{| }^{p-2}u=K\left(x){u}^{-\gamma },\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\\ u\gt 0,\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\end{array}\right. where Iα{I}_{\alpha } is a Riesz potential, 0<α<N0\lt \alpha \lt N, and N+αN<p<N+αN−2\displaystyle \frac{N+\alpha }{N}\lt p\lt \displaystyle \frac{N+\alpha }{N-2}, with λ>0\lambda \gt 0. Under suitable assumption on VV and KK, we research the existence of positive solutions of the equations. Furthermore, we obtain the asymptotic behavior of solutions as λ→0\lambda \to 0. |
---|