Existence and asymptotical behavior of solutions for a quasilinear Choquard equation with singularity

In this study, we consider the following quasilinear Choquard equation with singularity −Δu+V(x)u−uΔu2+λ(Iα∗∣u∣p)∣u∣p−2u=K(x)u−γ,x∈RN,u>0,x∈RN,\left\{\begin{array}{ll}-\Delta u+V\left(x)u-u\Delta {u}^{2}+\lambda \left({I}_{\alpha }\ast | u{| }^{p})| u{| }^{p-2}u=K\left(x){u}^{-\gamma },\hspace{1....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shao Liuyang, Wang Yingmin
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/881bae44ac984bafbb872dc63356aadd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:881bae44ac984bafbb872dc63356aadd
record_format dspace
spelling oai:doaj.org-article:881bae44ac984bafbb872dc63356aadd2021-12-05T14:10:52ZExistence and asymptotical behavior of solutions for a quasilinear Choquard equation with singularity2391-545510.1515/math-2021-0025https://doaj.org/article/881bae44ac984bafbb872dc63356aadd2021-05-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0025https://doaj.org/toc/2391-5455In this study, we consider the following quasilinear Choquard equation with singularity −Δu+V(x)u−uΔu2+λ(Iα∗∣u∣p)∣u∣p−2u=K(x)u−γ,x∈RN,u>0,x∈RN,\left\{\begin{array}{ll}-\Delta u+V\left(x)u-u\Delta {u}^{2}+\lambda \left({I}_{\alpha }\ast | u{| }^{p})| u{| }^{p-2}u=K\left(x){u}^{-\gamma },\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\\ u\gt 0,\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\end{array}\right. where Iα{I}_{\alpha } is a Riesz potential, 0<α<N0\lt \alpha \lt N, and N+αN<p<N+αN−2\displaystyle \frac{N+\alpha }{N}\lt p\lt \displaystyle \frac{N+\alpha }{N-2}, with λ>0\lambda \gt 0. Under suitable assumption on VV and KK, we research the existence of positive solutions of the equations. Furthermore, we obtain the asymptotic behavior of solutions as λ→0\lambda \to 0.Shao LiuyangWang YingminDe Gruyterarticlequasilinear schrödinger equationsingularitychoquard typevariational methods35b0935j20MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 259-267 (2021)
institution DOAJ
collection DOAJ
language EN
topic quasilinear schrödinger equation
singularity
choquard type
variational methods
35b09
35j20
Mathematics
QA1-939
spellingShingle quasilinear schrödinger equation
singularity
choquard type
variational methods
35b09
35j20
Mathematics
QA1-939
Shao Liuyang
Wang Yingmin
Existence and asymptotical behavior of solutions for a quasilinear Choquard equation with singularity
description In this study, we consider the following quasilinear Choquard equation with singularity −Δu+V(x)u−uΔu2+λ(Iα∗∣u∣p)∣u∣p−2u=K(x)u−γ,x∈RN,u>0,x∈RN,\left\{\begin{array}{ll}-\Delta u+V\left(x)u-u\Delta {u}^{2}+\lambda \left({I}_{\alpha }\ast | u{| }^{p})| u{| }^{p-2}u=K\left(x){u}^{-\gamma },\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\\ u\gt 0,\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\end{array}\right. where Iα{I}_{\alpha } is a Riesz potential, 0<α<N0\lt \alpha \lt N, and N+αN<p<N+αN−2\displaystyle \frac{N+\alpha }{N}\lt p\lt \displaystyle \frac{N+\alpha }{N-2}, with λ>0\lambda \gt 0. Under suitable assumption on VV and KK, we research the existence of positive solutions of the equations. Furthermore, we obtain the asymptotic behavior of solutions as λ→0\lambda \to 0.
format article
author Shao Liuyang
Wang Yingmin
author_facet Shao Liuyang
Wang Yingmin
author_sort Shao Liuyang
title Existence and asymptotical behavior of solutions for a quasilinear Choquard equation with singularity
title_short Existence and asymptotical behavior of solutions for a quasilinear Choquard equation with singularity
title_full Existence and asymptotical behavior of solutions for a quasilinear Choquard equation with singularity
title_fullStr Existence and asymptotical behavior of solutions for a quasilinear Choquard equation with singularity
title_full_unstemmed Existence and asymptotical behavior of solutions for a quasilinear Choquard equation with singularity
title_sort existence and asymptotical behavior of solutions for a quasilinear choquard equation with singularity
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/881bae44ac984bafbb872dc63356aadd
work_keys_str_mv AT shaoliuyang existenceandasymptoticalbehaviorofsolutionsforaquasilinearchoquardequationwithsingularity
AT wangyingmin existenceandasymptoticalbehaviorofsolutionsforaquasilinearchoquardequationwithsingularity
_version_ 1718371648786137088