Existence and asymptotical behavior of solutions for a quasilinear Choquard equation with singularity
In this study, we consider the following quasilinear Choquard equation with singularity −Δu+V(x)u−uΔu2+λ(Iα∗∣u∣p)∣u∣p−2u=K(x)u−γ,x∈RN,u>0,x∈RN,\left\{\begin{array}{ll}-\Delta u+V\left(x)u-u\Delta {u}^{2}+\lambda \left({I}_{\alpha }\ast | u{| }^{p})| u{| }^{p-2}u=K\left(x){u}^{-\gamma },\hspace{1....
Guardado en:
Autores principales: | Shao Liuyang, Wang Yingmin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/881bae44ac984bafbb872dc63356aadd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bifurcation analysis for a modified quasilinear equation with negative exponent
por: Chen Siyu, et al.
Publicado: (2021) -
Asymptotic solution of the Cauchy problem for the singularly perturbed partial integro-differential equation with rapidly oscillating coefficients and with rapidly oscillating heterogeneity
por: Kalimbetov Burkhan T., et al.
Publicado: (2021) -
Groundstates for Choquard type equations with weighted potentials and Hardy–Littlewood–Sobolev lower critical exponent
por: Zhou Shuai, et al.
Publicado: (2021) -
Refined second boundary behavior of the unique strictly convex solution to a singular Monge-Ampère equation
por: Wan Haitao, et al.
Publicado: (2021) -
Existence of ground state solutions for a class of Choquard equations with local nonlinear perturbation and variable potential
por: Jing Zhang, et al.
Publicado: (2021)