Operating Nanobeams in a Quantum Fluid

Abstract Microelectromechanical (MEMS) and nanoelectromechanical systems (NEMS) are ideal candidates for exploring quantum fluids, since they can be manufactured reproducibly, cover the frequency range from hundreds of kilohertz up to gigahertz and usually have very low power dissipation. Their smal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: D. I. Bradley, R. George, A. M. Guénault, R. P. Haley, S. Kafanov, M. T. Noble, Yu. A. Pashkin, G. R. Pickett, M. Poole, J. R. Prance, M. Sarsby, R. Schanen, V. Tsepelin, T. Wilcox, D. E. Zmeev
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/882ad53b41894ca385c7bbd139b26634
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Microelectromechanical (MEMS) and nanoelectromechanical systems (NEMS) are ideal candidates for exploring quantum fluids, since they can be manufactured reproducibly, cover the frequency range from hundreds of kilohertz up to gigahertz and usually have very low power dissipation. Their small size offers the possibility of probing the superfluid on scales comparable to, and below, the coherence length. That said, there have been hitherto no successful measurements of NEMS resonators in the liquid phases of helium. Here we report the operation of doubly-clamped aluminium nanobeams in superfluid 4He at temperatures spanning the superfluid transition. The devices are shown to be very sensitive detectors of the superfluid density and the normal fluid damping. However, a further and very important outcome of this work is the knowledge that now we have demonstrated that these devices can be successfully operated in superfluid 4He, it is straightforward to apply them in superfluid 3He which can be routinely cooled to below 100 μK. This brings us into the regime where nanomechanical devices operating at a few MHz frequencies may enter their mechanical quantum ground state.