An algorithm for verifying some norm identities in inner-product spaces
In this paper, we provide an algorithm for verifying the validity of identities of the form ∑A⊆n¯cA‖xA‖2=0, where xA=∑i∈Axi and n¯={1,⋯,n} in inner-product spaces. Such algorithm is used to verify the validity, in inner-product spaces, for a number of identities. These include a generalization of th...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/883924151a854d3cad31bce153e0f5d1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this paper, we provide an algorithm for verifying the validity of identities of the form ∑A⊆n¯cA‖xA‖2=0, where xA=∑i∈Axi and n¯={1,⋯,n} in inner-product spaces. Such algorithm is used to verify the validity, in inner-product spaces, for a number of identities. These include a generalization of the parallelepiped law. We also show that such identities hold only in inner-product spaces. Thus, the algorithm can be used to deduce characterizations of inner-product spaces. |
---|